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Abstract: Over the past decades, extensive research has been carried out on various possible implementations of automatic
speech recognition (ASR) systems. The most renowned algorithms in the field of ASR are the mel-frequency cepstral
coefficients and the hidden Markov models. However, there are also other methods, such as wavelet-based transforms,
artificial neural networks and support vector machines, which are becoming more popular. This review article presents a
comparative study on different approaches that were proposed for the task of ASR, and which are widely used nowadays.
1 Introduction

Human beings find it easier to communicate and express their
ideas via speech. In fact, using speech as a means of
controlling one’s surroundings has always been an
intriguing concept. For this reason, automatic speech
recognition (ASR) has always been a renowned area of
research. Over the past decades, a lot of research has been
carried out in order to create the ideal system which is able
to understand continuous speech in real-time, from different
speakers and in any environment. However, the present
ASR systems are still far from reaching this ultimate goal
[1, 2].
Large variations in speech signals make this task even more

challenging. As a matter of fact, even if the same phrase is
pronounced by the same speaker for a number of times, the
resultant speech signals will still have some small
differences. A number of difficulties that are encountered
during the recognition of speech signals are the absence of
clear boundaries between phonemes or words, unwanted
noise signals from the speaker’s surrounding environment
and speaker variability, such as gender, speaking style,
speed of speech, and regional and social dialects [3, 4].
Various applications where ASR is, or can be employed,

vary from simple tasks to more complex ones. Some of
these are speech-to-text input, ticket reservations, air traffic
control, security and biometric identification, gaming, home
automation and automobile sectors [5, 6]. In addition,
disabled and elderly persons can highly benefit from
advances in the field of ASR.
Over the past years, several review papers were published,

in which the ASR task was examined from various
perspectives. A recent review [7] discussed some of the
ASR challenges and also presented a brief overview on a
number of well-known approaches. The authors considered
two feature extraction techniques: the linear predictive
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coding coefficient (LPCC) and the mel frequency cepstral
coefficient (MFCC), as well as five different classification
methods: template-based approaches, knowledge-based
approaches, artificial neural networks (ANNs), dynamic
time warping (DTW) and hidden Markov models (HMMs).
Finally, a number of ASR systems were compared, based
on the feature extraction and classification techniques used.
Another review paper [8] presented the numerous possible
digital representations of a speech signal. Hence, the
authors focused on numerous approaches that were
employed at the pre-processing and feature extraction stages
of an ASR system. A different viewpoint on the
construction of ASR systems is presented in [9], where the
author points out that an ASR system consists of a number
of processing layers, since several components are required,
resulting in a number of computational layers. The author
also states that the present error rates of ASR systems can
be reduced, if the corresponding processing layers are
chosen wisely. Another two important review papers,
written by the same author, are presented in [4, 10]. In [10],
the author discusses both ASR and text-to-speech (TTS)
research areas. Considering only the ASR section, different
aspects were considered, such as data compression,
cepstrum-based feature extraction techniques and HMMs
for the classification of speech. In addition, different ways
to increase robustness against noise, were also discussed.
As for the review paper presented in [4], the field of ASR
is discussed from the viewpoint of pattern recognition.
Different problems that are encountered and various
methods on how to perform pattern recognition of speech
signals are discussed. These methods are all discussed with
respect to the nature of speech signals, in order to obtain
data reduction.
In this review paper, an analysis on different techniques

that are widely being employed nowadays for the task of
ASR is presented. In the following sections, the basic ASR
25
& The Institution of Engineering and Technology 2013



www.ietdl.org

model is introduced, along with a discussion on the various
methods that can be used for the corresponding
components. A comparison on different ASR systems that
were proposed will be presented, along with a discussion
on the progress of ASR techniques.

2 Automatic speech recognition systems

For an ASR system, a speech signal refers to the analogue
electrical representation of the acoustic wave, which is a
result of the constrictions in the vocal tract. Different vocal
tract constrictions generate different sounds. Most ASR
systems take advantage of the fact that the change in vocal
tract constrictions between one sound and another is not
done instantly. Hence, for a small portion of time, the vocal
tract is stationary for each sound, and this is usually taken
to be between 10 and 20 ms. The basic sound in a speech
signal is called a phoneme. These phonemes are then
combined, to form words and sentences. Each phoneme is
dependent on its context, and this dependency is usually
tackled, by considering tri-phones. Each language has its
own set of distinctive phonemes, which typically amounts
to between 30 and 50 phonemes. For example, the English
language can be represented by approximately 42 phonemes
[3, 8, 11, 12].
An ASR system mainly consists of four components:

pre-processing stage, feature extraction stage, classification
stage and a language model, as shown in Fig. 1. The
pre-processing stage transforms the speech signal before
any information is extracted by the feature extraction stage.
As a matter of fact, the functions to be implemented by the
pre-processing stage are also dependent on the approach
that will be employed at the feature extraction stage. A
number of common functions are the noise removal,
endpoint detection, pre-emphasis, framing and
normalisation [10, 13, 14].
After pre-processing, the feature extraction stage extracts a

number of predefined features from the processed speech
signal. These extracted features must be able to discriminate
between classes while being robust to any external
conditions, such as noise. Therefore, the performance of the
ASR system is highly dependent on the feature extraction
method chosen, since the classification stage will have to
classify efficiently the input speech signal according to
these extracted features [15–17]. Over the past few years
various feature extraction methods have been proposed,
namely the MFCCs, the discrete wavelet transforms
(DWTs) and the linear predictive coding (LPC) [1, 5].
The next stage is the language model, which consists of

various kinds of knowledge related to a language, such as
the syntax and the semantics [18]. A language model is
required, when it is necessary to recognise not only the
phonemes that make up the input speech signal, but also in
moving to either trigram, words or even sentences. Thus,
knowledge of a language is necessary in order to produce
meaningful representations of the speech signal [19].

Fig. 1 Traditional ASR system [10, 13]
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The final component is the classification stage, where the
extracted features and the language model are used to
recognise the speech signal. The classification stage can be
tackled in two different ways. The first approach is the
generative approach, where the joint probability distribution
is found over the given observations and the class labels.
The resulting joint probability distribution is then used to
predict the output for a new input. Two popular methods
that are based on the generative approach are the HMMs
and the Gaussian mixture models (GMMs). The second
approach is called the discriminative approach. A model
based on a discriminative approach finds the conditional
distribution using a parametric model, where the parameters
are determined from a training set consisting of pairs of the
input vectors and their corresponding target output vectors.
Two popular methods that are based on the discriminative
approach are the ANNs and support vector machines
(SVMs) [20, 21]. Various researches focused on using only
one method for the classification stage, such as the HMMs,
which is the mostly used method in the field of ASR.
However, numerous ASR systems based on hybrid models
were also proposed, in order to combine the strengths of
both approaches.
In the following sections, various methods that were

proposed for the feature extraction stage, the classification
stage, and the language model are going to be discussed
into further detail, with special reference to those
algorithms that are widely used nowadays.

2.1 Feature extraction stage

The mostly renowned feature extraction method in the field of
ASR is the MFCC. However, apart from this technique, there
are also other feature extraction methods, such as the DWT
and the LPC, which are also highly effective for ASR
applications.

2.1.1 Mel-frequency cepstral coefficients: Numerous
researchers chose MFCC as their feature extraction method
[22–26]. As a matter of fact, since the mid-1980s, MFCCs
are the most widely used feature extraction method in the
field of ASR [10, 27].
The MFCC try to mimic the human ear, where frequencies

are nonlinearly resolved across the audio spectrum. Hence,
the purpose of the mel filters is to deform the frequency
such that it follows the spatial relationship of the hair cell
distribution of the human ear. Hence, the mel frequency
scale corresponds to a linear scale below 1 kHz, and a
logarithmic scale above the 1 kHz, as given by (1) [28, 29].

Fmel =
1000

log (2)
× 1+ FHz

1000

[ ]
(1)

The computation of the MFCC is carried out by first dividing
the speech signal into overlapping frames of duration 25 ms
[22, 25, 26] or 30 ms [2, 28], with 10 ms of overlap for
consecutive frames. Each frame is then multiplied with a
Hamming window function, and the discrete Fourier
transform (DFT) is computed on each windowed frame [13,
28]. Generally, instead of the DFT, the fast Fourier
transform (FFT) is adopted to minimise the required
computations [10]. Subsequently, the data obtained from
the FFT are converted into filter bank outputs and the log
energy output is evaluated, as shown in (2), where Hi(k) is
IET Signal Process., 2013, Vol. 7, Iss. 1, pp. 25–46
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the filter bank

Xi = log10

∑N−1

k=0

|X (k)| × Hi(k)

( )
, for i = 1, ..., M (2)

Finally, the direct cosine transform (DCT), shown in (3) is
performed on the log energy output and the MFCC are
obtained at the output. Since the DCT packs the energy into
few coefficients and discards higher-order coefficients with
small energy, dimensionality reduction is achieved while
preserving most of the energy [13, 28]

Cj =
∑M
i=1

Xi cos j × i− 1

2

( )
× p

M

( )
, for j = 0, ..., J − 1

(3)

Although for the computation of MFCC, the speech signal is
divided into frames of duration 25 or 30 ms, it is important to
point out that the co-articulation of a phoneme extends well
beyond 30 ms. Thus, it is important to take into account
also the timing correlations between frames. With MFCC
this is taken into consideration by the addition of the
dynamic and acceleration features, commonly known as
delta and delta–delta features. Thus, the MFCC feature
vector normally consists of the static features, which are
obtained from the analysis of each frame, the dynamic
features, namely the differences between static features of
successive frames, and finally the acceleration features,
which are the differences between the dynamic features. A
typical MFCC feature vector consists of 13 static cepstral
coefficients, 13 delta values and 13 delta–delta values,
resulting in a 39-dimensional feature vector [10]. Another
commonly used MFCC feature vector takes into
consideration the normalised log energy. Hence, instead of
having 13 static cepstral coefficients, the MFCC feature
vector would consist of 12 static cepstral coefficients along
with the normalised log energy, with the addition of the
corresponding dynamic and acceleration features. This
would result also into a 39-dimensional feature vector
[22, 23, 26]. The work presented in [23] shows that the
addition of the dynamic and acceleration features improves
the recognition rate of the whole ASR model. In this
research, continuous density HMMs (CDHMMs) were
implemented for the task of speaker-independent phoneme
recognition, along with the MFCC as feature extraction
method. From the results obtained, it was showed that for
context-independent phone modelling, an increase in
accuracy of approximately 8% was achieved when the
normalised log energy, dynamic and acceleration features
were appended to 12 static cepstral coefficients.
Although MFCC are renowned and widely used in the area

of speech recognition, these still present some limitations.
MFCCs main drawback is their low robustness to noise
signals, since all MFCC are altered by the noise signal if at
least one frequency band is distorted [25, 27, 30–32]. Apart
from this, in MFCC it is inherently assumed that a frame
speech contains information of only one phoneme at a time,
whereas it may be the case that in a continuous speech
environment a frame speech contains information of two
consecutive phonemes [27, 32].
Various techniques on how to improve the robustness of

MFCC with respect to noise-corrupted speech signals have
been proposed. The techniques, which are widely used, are
IET Signal Process., 2013, Vol. 7, Iss. 1, pp. 25–46
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based on the concept of normalisation of the MFCCs, in
both training and testing conditions [30]. Examples of
features statistics normalisation techniques are mean and
variance normalisation (MVN) [30], histogram equalisation
(HEQ) [30] and cepstral mean normalisation (CMN) [25,
33]. In research [30], the normalisation techniques MVN
and HEQ were performed in full-band and sub-band modes.
With full-band mode, the chosen normalisation technique is
performed directly on the MFCCs, whereas in sub-band
mode, before performing the normalisation techniques on
the MFCCs, the MFCCs are first decomposed into
non-uniform sub-bands with the implementation of DWT.
In this case, it is possible to process individually, some or
all of the sub-bands, by the normalisation technique.
Finally, the feature vectors are reconstructed using the
inverse DWT (IDWT). Thus, this procedure allows the
possibility of processing separately those spectral bands that
contain essential information in the feature vectors. The
results obtained in this research confirmed that the inclusion
of normalisation techniques significantly improved the
accuracy of the ASR system. In fact, both full-band and
sub-band implementations of the MVN and HEQ
normalisation techniques obtained an increase in the
accuracy, with the sub-band versions performing best. With
a sub-band implementation, an increase in accuracy of
approximately 17% was obtained. Furthermore, HEQ
outperformed MVN in almost all signal-to-noise ratio
(SNR) cases considered in this study. Another research that
implemented a normalisation technique is presented in [25],
where the CMN is performed on the full-band MFCC
feature vectors.
Another important concern with MFCCs is that these are

derived from only the power spectrum of a speech signal,
ignoring the phase spectrum. However, information
provided by the phase spectrum is also useful for human
speech perception [24]. This issue is tackled by performing
speech enhancement before the feature extraction stage. The
work in [24] performs speech enhancement before the
feature extraction stage of the ASR model. The speech
signal enhancement stage employs the perceptual wavelet
packet transform (PWPT) to decompose the input speech
signal into sub-bands. De-noising with PWPT is performed
by the use of a thresholding algorithm. After de-noising the
wavelet coefficients obtained from the PWPT, these are
reconstructed by means of the inverse PWPT (IPWPT). In
this research, a modified version of the MFCCs is
implemented. These are the mel-frequency product
spectrum cepstral coefficients (MFPSCCs), which also
consider the phase spectrum during feature extraction. The
results obtained show that the performance of both MFCCs
and MFPSCCs is comparable for clean speech. However,
for noise-corrupted speech signals, MFPSCCs achieved
higher recognition rates as the SNR decreases.

2.1.2 Discrete wavelet transform: DWTs take into
consideration the temporal information that is inherent in
speech signals, apart from the frequency information. Since
speech signals are non-stationary in nature, the temporal
information is also important for speech recognition
applications [2, 16, 34]. With DWT, temporal information
is obtained by re-scaling and shifting an analysing mother
wavelet. In this manner, the input speech signal is analysed
at different frequencies with different resolutions [16, 34].
As a matter of fact, DWTs are based on multiresolution
analysis, which considers the fact that high-frequency
components appear for short durations, whereas
27
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low-frequency components appear for long durations. Hence,
a narrow window is used for high frequencies and a wide
window is used at low frequencies [34]. For this reason, the
DWT provides an adequate model for the human auditory
system, since a speech signal is analysed at decreasing
frequency resolution for increasing frequencies [17].
The DWT implementation consists of dividing the speech

signal under test into approximation and detail coefficients.
The approximation coefficients represent the high-scale
low-frequency components, whereas the detail coefficients
represent the low-scale high-frequency components of the
speech signal [5, 16]. The DWT can be implemented by
means of a fast pyramidal algorithm consisting of multirate
filterbanks, which was proposed in 1989 by Stephane
G. Mallat [35]. In fact, this algorithm is known as the
Mallat algorithm or Mallat-tree decomposition. This
pyramidal algorithm analyses the speech signal at different
frequency bands with different resolutions, by decomposing
the signal into approximation and detail coefficients as
shown in Fig. 2. The input speech signal is passed through
a low-pass filter and a high-pass filter, and then
down-sampled by 2, in order to obtain the approximation
and detail coefficients, respectively [16]. Hence, the
approximation and detail coefficients can be expressed by
(4) and (5), respectively, where h[n] and g[n] represent the
low-pass and high-pass filters [34]

ylow[k] =
∑
n

x[n]× h[2k − n] (4)

yhigh[k] =
∑
n

x[n]× g[2k − n] (5)

The approximation coefficients are then further divided using
the same wavelet decomposition step. This is achieved by
successive high-pass and low-pass filtering of the
approximation coefficients. This makes DWT a potential
candidate for SR tasks, since most of the information of a
speech signal lies at low frequencies. As a matter of fact, if
the high-frequency components are removed from a speech
signal, the sound will be different, but what was said can
still be understood [16]. The work in [12] confirms this,
since it was shown that better accuracy is achieved when
approximation coefficients are used to generate octaves,
instead of using the detail coefficients.
The DWT coefficients of the input speech signal are then

obtained by concatenating the approximation and detail
coefficients, starting from the last level of decomposition
[36]. The number of possible decomposition levels is
limited by the frame size chosen, although a number of
octaves between 3 and 6 are common [12].
The low-pass and high-pass filters used for DWT must be

quadrature mirror filters (QMF), as shown in (6), where L is
the filter length. This ensures that the filters used are
half-band filters. This QMF relationship guarantees also
perfect reconstruction of the input speech signal after it has

Fig. 2 Decomposition stage [16]
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been decomposed. Orthogonal wavelets such as Haar,
Daubechies and Coiflets all satisfy the QMF relationship [34]

g[L− 1− n] = (−1)n × h[n] (6)

The complexity of DWT is also very minimal. Considering a
complexity C per input sample for the first stage, because of
the sub-sampling by 2 at each stage, the next stage will end up
with a complexity equal to C/2 and so on. Thus, the
complexity of DWT will be less than 2C [37].
Various researches employed DWT at the feature

extraction stage [1, 5, 38–41]. The work proposed in [1]
used DWT to recognise spoken words for the Malayalam
language. A database of 20 different words, spoken by 20
individuals was utilised. Hence, an ASR system for
speaker-independent isolated word recognition was
designed. With DWT at the feature extraction stage, feature
vectors of element size 16 were employed. At the
classification stage, an ANN, the multilayer perceptron
(MLP) was used. With this approach, the accuracy reached
for the Malayalam language is of 89%.
Another research that explores into more detail the DWTs

for ASR is presented in [5]. In this research, the DWTs are
used for the recognition of the Hindi language. Different
types of wavelets were used for the DWT, to verify which
wavelet type will provide the highest accuracy. The
wavelets that were considered in this study are as follows:

† Daubechies wavelet of order 8 with three decomposition
levels;
† Daubechies wavelet of order 8 with five decomposition
levels;
† Daubechies wavelet of order 10 with five decomposition
levels;
† Coiflets wavelet of order 5 with five decomposition levels;
† Discrete Meyer with five decomposition levels.

The DWT coefficients obtained, were not used directly by
the classification stage, since after obtaining the DWT
coefficients, the LPCCs were evaluated based on these
coefficients. Afterwards, the K-mean algorithm is used to
form a vector quantised (VQ) codebook. During the
recognition phase, the minimum squared Euclidean distance
was used to find the corresponding codeword in the VQ
codebook. The results obtained showed that the Daubechies
wavelet of order 8 with five decomposition levels
performed best, surpassing the others by an accuracy of 6%.
This was followed by the Daubechies wavelet of order 10
with five decomposition levels, the discrete Meyer wavelet,
the Coiflet wavelet and finally the Daubechies wavelet of
order 8 with three decomposition levels. From the results
obtained, it can be concluded that the Daubechies wavelet
provided the higher recognition rates when compared with
other wavelets that were considered, provided that enough
decomposition levels were considered.
As a matter of fact, Daubechies wavelets are the most

widely used wavelets in the field of ASR applications [5,
12, 16, 24, 27, 40, 42]. These are also known as the
Maxflat wavelets since their frequency responses have
maximum flatness at frequencies 0 and π [16, 34]. Different
orders of the Daubechies wavelet were implemented in
different researches, although the wavelet of order 8 is the
one which is widely used [5, 12, 24, 40, 43].
A number of research publications have also shown that

DWT provide better results than the MFCC. When compared
IET Signal Process., 2013, Vol. 7, Iss. 1, pp. 25–46
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with MFCC, the DWT enables better frequency resolution at
lower frequencies, and hence better time localisation of the
transient phenomena in the time domain [39, 44].
As already mentioned earlier, MFCC are not robust with

respect to noise-corrupted speech signals. On the other
hand, DWT were successfully used for de-noising tasks
because of their ability in providing localised time and
frequency information [17, 31, 45]. Hence, if only a part of
the speech signal’s frequency band is corrupted by noise,
not all DWT coefficients are altered.
Various researchers considered the idea of merging the

DWT and MFCC, in order to benefit from the advantages
of both methods. This new feature extraction method is
known as mel-frequency discrete wavelet coefficients
(MFDWC), and is obtained by applying the DWT to the
mel-scaled log filter bank energies of a speech frame [32,
41, 46]. In [46] the MFDWC method was used with
DARPA TIMIT Acoustic-Phonetic Continuous Speech
Corpus (TIMIT) database. The phonemes available in the
TIMIT database were clustered to a total of 39 classes
according to the CMU/MIT standards. The results obtained
showed that MFDWC achieved higher accuracy when
compared with MFCC and wavelet transforms alone, for
both clean and noisy environments. The work presented in
[41] used MFDWC for the Persian language. This research
compared the results obtained by the MFDWC and the
MFCC, for both clean and noisy speech signals. The results
obtained confirmed that MFDWC performed better than
MFCC, for both clean and noisy environments.

2.1.3 Wavelet packet transform: The WPTs are similar
to DWT, with the only difference that both the approximation
and detail coefficients are decomposed further [16].
The research presented in [13] compares a number of

DFT and DWPT feature extraction methods for the SR
task. One of the DFT methods considered in this study is
the MFCC. The results obtained showed that the DWPT
methods obtained higher recognition rates when compared
with the DFT methods considered. Considering a
DWPT-based method, a reduction in the word error rate of
approximately 20% was achieved, when compared with
the MFCC.
Another important comparison is that of WPT with DWT.

When WPT was compared with DWT for the task of ASR,
the performance obtained from the DWT outperformed that
obtained from the WPT. This was shown in the work
presented in [16], where comparison between the DWT and
WPT for the Malayalam language is presented. The
accuracies obtained for the WPT and DWT are 61 and
89%, respectively, showing a significant improvement in
the recognition rate, when comparing DWT with WPT.

2.1.4 Linear predictive coding: The LPC method is a
time domain approach, which tries to mimic the resonant
structure of the human vocal tract when a sound is
pronounced. LPC analysis is carried out by approximating
each current sample, as a linear combination of P past
samples, as defined by (7) [8, 10]

ŝ[n] =
∑P
k=1

aks(n− k) (7)

This is obtained by first generating frames for the input
speech signal, and then performing windowing of each
frame in order to minimise the discontinuities present at the
IET Signal Process., 2013, Vol. 7, Iss. 1, pp. 25–46
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start and end of a frame. Finally, the autocorrelation
between frames is evaluated, and the LPC analysis is
performed on the autocorrelation coefficients obtained, by
using Durbin’s method [8, 33, 47].
LPC was first proposed in 1984 [48], but is still widely

used nowadays [5, 33, 47, 49]. In the work presented in
[33], the LPC are combined with the DWTs. After
decomposing the input speech signal using DWT, each
sub-band is further modelled using LPC. A normalisation
parameterisation method, the CMN, is also used to make
the designed system robust to noise signals. The proposed
system is evaluated on isolated digits for the Marathi
language, in presence of white Gaussian noise. The results
obtained with this proposed feature extraction method,
outperformed the results achieved with MFCC alone and
MFCC along with CMN, by approximately 15%. Another
work that also used LPC with DWT is presented in [5].

2.1.5 Linear predictive cepstral coefficients: The
LPCC is an extension of the LPC technique [8]. After
completing the LPC analysis, a cepstral analysis is
executed, in order to obtain the corresponding cepstral
coefficients. The cepstral coefficients are computed through
a recursive procedure, as shown in (8) and (9) below [50].

v̂[n] = ln (G), for n = 0 (8)

v̂[n] = an +
∑n−1

k=1

k

n

( )
v̂[k]an−k , for 1 ≤ n ≤ p (9)

A recent research that studied the LPCCs for the task of ASR
is presented in [51]. The proposed system studied the LPCC
and MFCC, along with a modified self-organising map
(SOM). The designed system is evaluated with 12 Indian
words from five different speakers, and the results obtained
showed that both LPCC and MFCC obtained similar results.
Another work that performed a comparison of the LPCC

with MFCC is presented in [52]. This research analysed
these two feature extraction techniques along with a
simplified Bayes decision rule, for the speech recognition of
Mandarin syllables. The results obtained showed that the
LPCC achieved an accuracy which is 10% higher than that
obtained by the MFCC. Additionally, the extraction of the
LPCC features is 5.5 times faster than the MFCCs, resulting
in lower computational time.

2.1.6 Perceptual linear prediction (PLP): The PLP is
based on three main characteristics: spectral resolution of
the critical band, equal loudness curve adjustment and
application of intensity-loudness power law, in order to try
and mimic the human auditory system. The PLP
coefficients are obtained by first performing FFT on the
windowed speech frame, and then apply the Bark-scale
filtering, shown in (10), where B is the Bark-warped
frequency. The Bark-scale filtering executes the first
characteristic of the PLP analysis, since it models the
critical band frequency selectivity inside the human cochlea
[8, 13, 50].

u(Bi) =
∑2.5

B=−1.3

X (B− Bi)
∣∣ ∣∣2c(B) (10)

Afterwards, the Bark-scale filtering outputs are weighted
according to the equal-loudness curve, and the resultant
outputs are compressed by the intensity-loudness power
29
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law. Finally, the PLP coefficients are computed by
performing consecutively on the filtering outputs the inverse
Fourier transform, the linear predictive analysis and the
cepstral analysis [8, 13, 50].
The research presented in [13], performed the PLP features

with two different window lengths. The TIMIT Corpus was
utilised for the evaluation of this research, and the available
phonemes were clustered into 38 classes. As for the
classification stage of the ASR system, the HMMs were
employed. The results obtained showed that for a window
length of 25.625 ms, the PLP has approximately the same
word and sentence error rates as the MFCC. However,
when the window length was reduced to 16 ms, the
recognition rates of the MFCC improved slightly,
whereas those obtained by the PLP analysis remained the
same. Hence, this resulted into the MFCC achieving a
reduction in the word and sentence error rates, of
approximately 1.1 and 2.3%, respectively, when compared
with the PLP.
The PLP analysis was also employed for the recognition of

Malay phonemes [53]. In this research, instead of utilising the
PLP feature vectors, the PLP spectrum patterns were used.
Hence, the recognition of phonemes was obtained through
speech spectrum image classification. These spectrum
images were inputted into an MLP network, for the
recognition of 22 Malay phonemes, obtained from two male
child speakers. With this approach, the accuracy reached
was that of 76.1%.
Considering the implementation of PLP analysis in noisy

environments, the work presented in [54], studied the PLP
analysis along with a hybrid HMM–ANN system, for the
task of phoneme recognition. The TIMIT Corpus was
employed for evaluation, and the phonemes available were
folded to a total of 39 classes. With this approach, the
authors succeeded in achieving a recognition rate equal to
64.9%. However, when this system was evaluated with the
handset TIMIT (HTIMIT) Corpus, which is a database of
speech data collected over different telephone channels, the
accuracy was degraded to 34.4%, owing to the distortions
that are present in communication channels. In research
[55], two different noise signals: white noise and street
noise were considered for the task of word recognition of
six languages: English, German, French, Italian, Spanish
and Hungarian. The results obtained showed that both PLP
and MFCC achieved approximately the same accuracies.
Nevertheless, the PLP analysis performed slightly better
than the MFCC, in clean, white and street noises, by
approximately 0.2%. The authors state that this slight
improvement of PLP with respect to MFCC could be
attributed to the critical band analysis method. Apart from
this, in research [50], it was proved that the PLP performs
also better than the LPCC, when it comes to noisy
environments.

2.1.7 RelAtive SpecTrA–perceptual linear prediction
(RASTA–PLP): The RASTA–PLP analysis consists in the
merging of the RASTA technique to the PLP method, in
order to increase the robustness of the PLP features. The
RASTA analysis method is based on the fact that the
temporal properties of the surrounding environment are
different from those of a speech signal. Hence, by
band-pass filtering the energy present in each frequency
sub-band, short-term noises are smoothed, and the effects of
channel mismatch between the training and evaluation
environments are reduced [8, 10].
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The work presented in [54], apart from considering the PLP
features, as explained in Section 2.1.6, the RASTA–PLP
technique was also studied. From the results obtained, it can
be concluded that for clean speech, the RASTA–PLP
achieved a lower recognition rate, of 3.7%, when compared
with the PLP method. However, when the HTIMIT was
considered, the RASTA–PLP outperformed PLP, by
obtaining an increase in the accuracy equal to 11.8%.
Hence, this research confirms that when it comes to noisy
environments, the addition of RASTA method to the PLP
technique, results in feature vectors that are more robust.
Another research which demonstrates the robustness of the

RASTA–PLP over the PLP technique is presented in [56]. In
this work, two different experiments were studied. The first
experiment considers these two feature extraction
techniques, along with a CDHMM, for small vocabulary
isolated telephone quality speech signals. With both training
and test sets having the same channel conditions, RASTA–
PLP performs only slightly better than the PLP. However,
when the test data was corrupted, the RASTA–PLP
outperforms PLP by 26.35%. To better confirm the results
obtained above, the authors collected a number of spoken
digits samples, over a telephone channel under realistic
conditions. As expected, the RASTA–PLP obtained again a
higher recognition rate when compared with the PLP
features, which is approximately equal to 23.66% higher.
For this task only, the LPC features were also considered.
However, the LPC features achieved the lowest accuracies,
with a reduction of 29.73 and 53.03%, when compared
with the PLP and RASTA–PLP, respectively. As for the
second experiment, the DARPA Corpus was utilised, in
order to test with large vocabulary continuous high-quality
speech. For this experiment, the CDHMMs were changed
with a hybrid HMM–ANN system, and low-pass filtering
was applied to the speech signals, in order to add further
distortions. The results obtained showed that when the
low-pass filtering was applied, the accuracy obtained from
the PLP features decreased by 46.8%, whereas that
achieved by the RASTA–PLP was reduced only by 0.6%.
The RASTA–PLP analysis was also considered with

wavelet transforms, for the Kannada language [57]. Three
different feature extraction techniques: LPC, MFCC and
RASTA–PLP, were examined for the recognition of isolated
Kannada digits. However, before employing these
techniques, the speech signals were pre-processed through
the use of wavelet transforms. For clean speech, the DWT
was used, whereas for noisy speech the WPT was employed
for pre-processing and also for noise removal. The results
obtained confirmed, that by applying wavelet transforms to
other feature extraction techniques, an improvement in the
accuracies is obtained. For clean speech, the RASTA–PLP
method alone achieved the lowest accuracy, equal to 49%,
followed by the LPC, with 76%, and finally the MFCC,
with the highest accuracy, equal to 81%. With the addition
of the DWT, all three accuracies were increased, with
MFCC, LPC and RASTA–PLP, achieving 94, 82 and 52%,
respectively. Considering noisy speech, RASTA–PLP
achieved the highest accuracy, equal to 73%, followed by
the MFCC with 60% and finally the LPC, which achieved
an accuracy of 53%. When WPT was considered, all
accuracies were improved, but RASTA–PLP achieved the
highest accuracy, which was equal to 83%.
Hence, it can be concluded that when it comes to clean

speech signals, the RASTA–PLP method, may not be the
best choice. Even when, both training and test environments
are similar, the RASTA–PLP will only slightly improve the
IET Signal Process., 2013, Vol. 7, Iss. 1, pp. 25–46
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accuracies, when compared with the PLP features. However,
for noisy environments, the RASTA–PLP outperformed the
PLP, the LPC and the MFCC features. The robustness of
the RASTA–PLP was also further improved, when
combined with wavelet transforms.

2.1.8 Vector quantisation: The objective of VQ is the
formation of clusters, each representing a specific class.
During the training process, extracted feature vectors from
each specific class are used to form a codebook, through
the use of an iterative method. Thus, the resulting codebook
is a collection of possible feature vector representations for
each class. During the recognition process, the VQ
algorithm will go through the whole codebook in order to
find the corresponding vector, which best represents the
input feature vector, according to a predefined distance
measure. The class representative of the winning entry in
the codebook will be then assigned as the recognised class
representation for the input feature vector. The main
disadvantage of the VQ method is the quantisation error,
because of the codebook’s discrete representation of speech
signals [2, 42].

The VQ approach is also used in combination with other
feature extraction methods, such as MFCC [58] and DWT
[5, 42], in order to further improve the designed ASR
system by taking advantage of the clustering property of the
VQ approach.

2.1.9 Principal component analysis (PCA): PCA is
carried out by finding a linear combination with which the
original data can be represented. The PCA is mainly used
as a dimensionality reduction technique at the front-end of
an ASR system. However, the PCA can also be utilised
for features de-correlation, by finding a set of orthogonal
basis vectors, where the mappings of the original data to
the different basis vectors are uncorrelated [8, 59, 60].
Various researches employed the PCA, in order to increase

the robustness of the designed system under noise conditions
[59–61]. In research [59], the authors state that the PCA
analysis is required, when the recognition system is
corrupted by noisy speech signals. This statement is
confirmed through an evaluation made on four different
noisy environments, employing Nevisa HMM-based Persian
continuous speech recognition system. The results obtained
showed that when the PCA was combined with the CMS to
a parallel model combination, the robustness of the
recognition system was increased. Another recent research,
proposed a PCA-based method, with which further
reduction in the error rates was obtained [60]. This
PCA-based approach was also combined with the MVN
method, in order to make the proposed recognition system
more robust. This approach was evaluated with the
Aurora-2 digit string corpus, and the results obtained
showed that this approach achieved a reduction in the error
rates of approximately 18 and 4%, with respect to the
MFCC analysis, and when employing only the MVN
method, respectively.
The PCA was also combined with the MFCC, in order to

increase the robustness of the latter technique [61]. As
stated in the section discussing MFCC, one of its
drawbacks is its low robustness to noise signals. Hence, in
this research, the MFCC algorithm is modified by
computing the kernel PCA instead of the DCT. Thanks to
the kernel PCA, the recognition rates obtained with noisy
speech signals, were increased from 63.9 to 75.0%.
However, when it comes to clean environments, the
IET Signal Process., 2013, Vol. 7, Iss. 1, pp. 25–46
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modified MFCC obtained similar results to the baseline
MFCC.

2.1.10 Linear discriminant analysis (LDA): LDA is
another dimensionality reduction technique, as the PCA.
However, in contrast to PCA, the LDA is a supervised
technique [8]. The concept behind LDA is the mapping of
the input data to a lower-dimensional subspace, by finding a
linear mapping that maximises the linear class separability
[62]. The LDA is based on two assumptions: the first one is
that all classes have a multivariate Gaussian distribution,
and the second assumption states that these classes must
share the same intra-class covariance matrix [63].
Various modifications were proposed to the baseline LDA

technique [62, 64]. One popular modification is the
heteroscedastic LDA (HLDA), in which the second
assumption of the conventional LDA is ignored, and thus
each class can have a different covariance matrix [63]. The
HLDA is then used instead of the LDA, for feature-level
combination [63, 64]. Another recent modification is
proposed in [62], where this time, the first assumption of
the baseline LDA is modified. In this research, a novel class
distribution, based on phoneme segmentation is proposed.
The results obtained showed, that comparable or slightly
better results were obtained, when compared with the
conventional LDA.

2.2 Classification

Numerous researches have been carried out in order to find
that ideal classifier which recognises correctly speech
segments under various conditions. Three renowned
methods that were used at the classification stage of ASR
systems are the HMM, the ANN and the SVMs. In the
following section, these three methods will be discussed
with respect to their implementation in the field of ASR.

2.2.1 Hidden Markov models: HMM is the most
successful approach, and hence the most commonly used
method for the classification stage of an ASR system [2, 10,
65–67]. The popularity of HMMs is mainly attributed to
their ability in modelling the time distribution of speech
signals. Apart from this, HMMs are based on a flexible
model, which is simple to adapt according to the required
architecture, and both the training procedure and the
recognition process are easy to execute. The result is an
efficient approach, which is highly practical to implement
[2, 10, 68, 69].
In simple words, with HMMs the probability that a speech

utterance was generated by the pronunciation of a particular
phoneme or word can be found. Hence, the most probable
representation for a speech utterance can be evaluated from
a number of possibilities [2]. Consider a simple example, of
a first-order three-state left-to-right HMM, as shown in
Fig. 3. The left-to-right HMM is the type of model, which
is commonly employed in ASR applications, since its
configuration is able to model the temporal characteristics
of speech signals. An HMM can be mainly represented by
three parameters. First, there are the possible state
transitions that can take place, represented by the flow of
arrows between the given states. Each of these state
transitions are depicted by a probability, aij, which is the
probability of being in state Sj, given that the past state was
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Si, as shown in (11) [68, 70]

aij = P qt = Sj|qt−1 = Si

( )
(11)

Second, there are the possible observations that can be seen at
the output, each representing a possible sound that can be
produced at each state. Since the production of speech
signals differs, these observations can be also represented
by a probabilistic function. This is normally represented by
the probability variable bj(Ot), which is the probability of
the observation at time t, for state Sj. At last, the third
parameter of an HMM is the initial state probability
distribution, π. Hence, an HMM can be defined as [68, 70]

l = (A, b, p) for 1 ≤ i, j ≤ N and 1 ≤ k ≤ M (12)

where A = {aij}, B = {bj(Ot)}, N is the number of states, andM
is the number of observations. Consequently, the probability
of an observation can be determined from [68, 70]

Pr(O|p, A, B) =
∑
q

pqt

∏T
t=1

aqt−1
bqt Ot

( )
(13)

The groundwork of HMMs is based on three fundamentals,
namely the evaluation of the probability for a sequence of
utterances for a given HMM, the selection of the best
sequence of model states, and finally the modification of the
corresponding winning model parameters for better
representation of the speech utterances presented [71]. For
further theoretical details on HMMs, interested readers are
referred to [68, 70, 71].
Some of the work done for continuous phoneme

recognition will now be discussed. Particular consideration
is given to the task of phoneme recognition since with
HMMs, words are always based on the concatenation of
phoneme units. Hence, adequate word recognition should
be obtained if good phoneme recognition is achieved [23, 72].
One of the early papers, which proposed the use of HMMs

for the task of phoneme recognition, considered discrete
HMMs [72]. Discrete HMMs were designed along with
three sets of codebooks, for the task of speaker-independent
phoneme recognition. The codebooks consist of various VQ
LPC components, which were used as emission
probabilities of the discrete HMMs. A smoothing algorithm,
with which adequate recognition can be obtained even with

Fig. 3 First-order three-state left-to-right HMM [68, 70]
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a small set of training data, is also presented. Two different
phone architectures were considered: – a context
independent model and a right-context-dependent model.
The resultant phoneme recognition system was evaluated
with the TIMIT database, where the phonemes were folded
to a total of 39 classes according to the CMU/MIT
standards. The highest results were obtained from the
right-context-dependent model, with a percentage correct
equal to 69.51%. With the context-independent model, a
percentage correct of 58.77% was achieved. With the
addition of a language model, bigram units were
considered, and the percent correct increased to 73.80 and
64.07%, for the right-context-dependent and
context-independent models, respectively. Additionally, a
maximum accuracy of 66.08% was achieved from the
right-context-dependent model, when considering also the
insertion errors.
A popular approach is the use of phone posterior

probabilities. Recent studies that work with phone
posteriors are presented in [26, 73]. The standard approach
is based on the use of MLP to evaluate the phone posteriors
[74]. Spectral feature frames are inputted to an MLP, and
each output of the MLP corresponds to a phoneme. The
MLP is then trained to find a mapping between the spectral
feature frames presented at the input, and the phoneme
targets at the output. Afterwards, a logarithmic function and
a Karhunen–Loeve transform (KLT) are performed on the
MLP phone posterior probabilities, to form the feature
vectors, which will be presented to an HMM, for training or
classification. In [73], two approaches for enhancing phone
posteriors were presented. The first approach initially
estimates the phone posteriors using the standard MLP
approach, and then uses these as emission probabilities in
the HMMs forward and backward algorithm. This results
into enhanced phone posteriors, which take into
consideration the phonetic and lexical knowledge. In the
second approach, another MLP post-processes the phone
posterior probabilities obtained from the first MLP. The
resultant phone posteriors from the second MLP are the
new enhanced phone posterior probabilities. In this manner,
the inter- and intra-dependencies between the phone
posteriors are also considered. Both approaches were
evaluated on small and large vocabulary databases. With
this approach, a reduction in the error rate was obtained, for
frame, phoneme and word recognition rates. Apart from
this, the resultant increase in computational load due to the
enhancement process is negligible. Another research
proposes a two-stage estimation of posteriors [26]. The first
stage of the designed system is based on a hybrid HMM–
MLP architecture, whereas the second stage is based on an
MLP with one hidden layer. For the hybrid HMM–MLP
architecture, both context-independent and
context-dependent HMMs were considered. Comparing the
results obtained from these two researches [26, 73], both
systems were evaluated with the TIMIT database, and
clustered the phonemes to a total of 39 classes. The
enhanced phone posteriors approach proposed in [73],
achieved a phone error rate of 28.5%. However, a better
result was obtained with the two-stage estimation of
posteriors proposed in [26], where a phone error rate of
22.42% was achieved.
A procedure based on HMMs and wavelet transforms was

also proposed in [75], in order to improve wavelet-based
algorithms by making use of the HMMs. This method is
called the hidden Markov tree (HMT) model. Wavelet
transform algorithms have already proved their ability in
IET Signal Process., 2013, Vol. 7, Iss. 1, pp. 25–46
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providing excellent results in speech recognition applications.
However, regular wavelet transform algorithms treat each
wavelet coefficient independently. If the dependencies
between wavelet coefficients are also considered, their
performance might improve. With HMT model, simple
Markov structures are used to model the dependencies
between the wavelet coefficients. These Markov structures
are applied between the states of the wavelet coefficients
and not directly to the wavelet coefficients. The end result
is a binary tree structure, with the wavelet states connected
vertically across the scale. The HMT model was evaluated
on a simple signal classification problem. The results
obtained showed that a further reduction in the error rate
was obtained when comparing the HMT model to a
wavelet-based algorithm. Apart from this, different noise
signals were also considered, and the results obtained
showed that better de-noising was achieved with the HMT
model [75]. Hence, the HMT model is also suitable for
robust ASR. In fact, an enhanced method for the utilisation
of the HMT model for de-noising applications is presented
in [76]. The proposed method is made up of two cascaded
stages: the first one being the HMT model for the
de-noising process and at the second stage a weighted filter
bank analysis is performed. The proposed feature extraction
method was evaluated on noisy speech signals with SNR
from 25 to 0 dB. Comparing the proposed method with the
HMT model presented in [75], the former approach
achieved a higher recognition rate, up to an SNR of 20 dB.
For example, with an SNR of 10 dB, an increase in word
and sentence recognition rates of approximately 4 and 7%
was achieved, respectively. However, for SNR of 25 dB the
same recognition rate as the HMT model was obtained.
Hence, for high SNRs it might be more suitable to opt for
the HMT model presented in [75], which implements a
simpler feature extraction method. Another research
considers the implementation of HMT models as emission
probabilities of a HMM [40]. An important drawback of
HMT models in speech recognition tasks is the inability of
handling sequences of variable length. However, this is not
an issue when merging HMT with HMMs. Additionally,
the performance of HMMs is also improved, since with
HMT models as emission probabilities of HMMs, the
assumption of stationarity is removed. Hence, in this
research [40] an expectation–maximisation (EM) algorithm
is proposed, which uses the output observations from the
HMT model, at each state of the HMM. In this manner, the
HMM will take care of the long temporal information,
whereas the local dynamics are captured in the wavelet
domain by the HMT models. The designed system was
evaluated on five different phonemes from the TIMIT
database. The accuracies obtained showed that the proposed
system achieved a higher recognition rate, when compared
with a Gaussian multi mixture (GMM) model, an
HMT-model, and an HMM with GMM as emission
probabilities. The HMM–HMT model achieved an accuracy
rate equal to 42.38%, exceeding the HMM–GMM model,
the GMM model and the HMT model, by 11.54, 9.76 and
4.29%, respectively.
Recently, the major approach used in ASR system is the

CDHMM [23, 45, 77]. CDHMM is based on an efficient
maximum likelihood (ML) algorithm for the training and
recognition of the HMMs. With CDHMM, one is able to
capture the variations between and within phonemic units
[23].
The work presented in [23] tackles the concept of large

vocabulary in continuous SR (LVCSR) with CDHMM. As
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research advances in the field of ASR, the concept of
LVCSR is becoming more prominent. The researchers of
this work state that it is more feasible to tackle the problem
of LVCSR at phonemes level rather than at words level,
since the number of phonemes is less than the number of
possible words in a large vocabulary. Hence, in this study a
speaker-independent phoneme recognition system for
continuous speech environments is designed based on
CDHMM. The aim of this research was to find the optimal
model architecture with which a robust phoneme
recognition system is achieved, but at the same time
keeping in mind the limited amount of training data
available. The approach considered is based on the idea of
increasing the number of Gaussian mixture components per
state according to the corresponding number of frames
available for training. In this manner, the resolution of the
CDHMM models is increased or decreased until the
required performance level is reached. Two different
initialisation methods were employed for the model’s output
probabilities. The first initialisation method is based on the
flat start procedure, whereas the second initialisation
approach is based on the Viterbi algorithm. The HMM
toolkit (HTK) [78] was used throughout this research for
the design of the CDHMM, and at the feature extraction
stage the MFCC was considered. The TIMIT database was
used to evaluate the designed phoneme recognition system.
The results obtained showed that the second initialisation
approach performed best, with a percentage correct and
percentage accuracy equal to 60.68 and 54.01%,
respectively. As the number of Gaussian mixtures was
increased, a noticeable improvement in the accuracies was
obtained. With 64 Gaussian mixtures per state, an accuracy
of 67.79% was achieved. However, this increase in
accuracy comes at a cost, since the complexity of the
system increases as the number of Gaussian mixtures is
increased.
Another approach that was proposed to improve further the

CDHMM, was the training procedure based on the concept of
large margin classifiers, which is used in machine learning.
This method already proved its ability in reducing the error
rates, when compared with the conventional ML estimator
[77, 79, 80]. The origin of this concept was proposed in
[79]. This work was further improved in [80], by adding a
margin-based cost function that penalises a data point,
which was incorrectly classified according to its Hamming
distance from the desired transcription. Another work
proposed the idea of optimising not only the mean
parameters of the GMMs during the training phase, but also
the variance parameters [77]. With the consideration of the
variance parameters, a further reduction in the recognition
error rates was obtained. The research presented in [81]
proposes a different approach to large margin CDHMMs
based on a Bayesian learning method. Apart from this, an
improvement to the ASR system to deal with different
testing environments is also shown. The designed system
was tested for phoneme recognition with the TIMIT
database and the results obtained showed a slight reduction
of approximately 1% in the phoneme error rates when
compared with large margin CDHMMs proposed in
[79, 80]. However, comparison with the work done in [77]
was not given.
Although huge improvements and significant recognition

rates were obtained, HMMs are still far from achieving an
optimal ASR system by themselves [10, 69]. One of the
major limitations with HMMs is the assumption that the
probability of being in a particular state is only dependent
33
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on its preceding state, ignoring any long-term dependencies.
This assumption is what makes HMMs simple to
implement, nevertheless, it makes HMMs inaccurate.
Additionally, the emission probabilities chosen for the
HMMs states are arbitrarily chosen, and might not even
represent the output probabilities of the corresponding state
properly. In general, these emission probabilities are
represented by GMMs, where the number of mixtures
chosen might either limit the system, or increase its
complexity unnecessarily [82]. Hence, although
considerable accuracies were obtained from ASR systems
based on HMMs, one still has to find either a way of
improving the present HMMs systems or establish a
completely new approach for ASR applications.

2.2.2 Artificial neural networks: ANNs are the second
most widely used method at the classification stage of an
ASR system. These were used either independently or as a
combination with HMMs, the latter being the one which is
extensively used, in order to combine the advantages of
both ANNs and HMMs [2, 10, 45].
ANNs are excellent classifiers and are highly adequate for

pattern recognition applications. They are desirable to use,
because of their ability in organising and learning according
to the datasets inputted during the training phase.
Additionally, ANNs are capable to adapt when unknown
data are presented, thus being able to classify new data
effectively [16, 45]. However, ANNs are based on
Empirical Risk Minimisation (ERM), which makes ANNs
prone to over training and local minima problems [45].
Another drawback is their inability in representing the time
variability present in speech signals. This drawback is
generally solved with the consideration of a hybrid model,
where ANNs and HMMs are merged together [2].
Five ANN architectures that are widely used nowadays are

briefly discussed, focusing mainly on recent research. These
are the MLP, the self-organising maps (SOMs), the radial
basis function (RBF), the recurrent neural network (RNN)
and the fuzzy neural network (FNN).

2.2.2.1 Multilayer perceptrons: The MLP is the most
successful and hence the most popular ANN architecture in
the field of ASR [2, 26]. Basically, the MLP is a
feed-forward network consisting of at least three layers:–
the input layer, the hidden layer and the output layer. A
simple example of an MLP is shown in Fig. 4.
The learning algorithm employed, during the training

process, is generally based on the conventional
backpropagation approach and the concept of lateral
inhibition. Afterwards, during the recognition phase, the
resultant output is determined according to the
representation corresponding to the output neuron, which

Fig. 4 Multilayer perceptron [83]
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results in the highest activation. A major drawback of MLP
is the inability to handle the dynamicity of speech signals.
As a result, inputs presented to MLP need to be of
fixed length. Apart from this, MLPs are only able to
deal with small vocabularies, making them more
appropriate to phoneme recognition rather than word
recognition [1, 2, 83].
Looking at some work which considered the use of MLP,

in [84], the MLP were used to recognise Urdu digits from a
mono-speaker database, under noise-free conditions. As
feature parameter extractors, the FFT and MFCC were
employed. With these two feature parameter extractors, and
the MLP for classification, an accuracy of 94% was
reached. The work in [16] proposed also the use of MLP
with either the WPT or the DWT as feature extractors, for
the Malayalam language. This research mainly concentrates
on the comparison of the WPT and DWT implementations.
However, the results obtained showed that the MLP can be
successfully embedded with wavelet transform approaches.
The MLP were also utilised for the recognition of Persian
digits [85]. In the proposed method, the speech signal is
first de-noised with MFCC, and afterwards feature vectors
were extracted with the use of DWT. The feature vectors
obtained were then inputted to the MLP for classification.
For Persian spoken digits from a male speaker, an accuracy
of 98% was achieved.
As already mentioned previously, the MLP are widely used

to evaluate the posterior probabilities, in order to further
improve the accuracies obtained from HMMs. Considering
the baseline system presented in [26], comparing HMMs
and a hybrid HMM–MLP architecture, a lower phoneme
error rate equal to 6.27%, was obtained with the latter
approach. Apart from improving HMMs-based systems, this
hybrid approach resulted also in the utmost successful
results obtained from MLP-based architectures [26].
Recently, there was also the introduction of a new concept

based on MLP, the sparse MLP (SMLP) [83, 86]. The SMLP
are based on the same layout as MLP, with the only difference
that the outputs of one of the hidden layers are sparse. A
phoneme recognition system, based on SMLP is introduced
in [83]. The designed phoneme recognition system is based
on a hybrid HMM–SMLP approach, where the posterior
probabilities are dependent on the sparse hidden features.
The feature parameter extractor employed is based on PLP
analysis. The designed system was evaluated on the TIMIT
database, where the total number of phoneme classes were
reduced to 49 for training, and then further reduced to 39
classes for classification according to the CMU/MIT
standards. A phone error rate of 21.2% was obtained, with
a 6.2% improvement with respect to MLP-based systems.
This system was further improved in [86], by considering
also the frequency-domain linear prediction (FDLP)
temporal features and the modified linear discriminant
analysis (MLDA) spectro-temporal features, as feature
parameter extractors, with the previous PLP cepstral
coefficients. With the new feature vectors, the phoneme
error rate was further reduced to 19.6%.

2.2.2.2 Self-organising maps: The SOMwas introduced
by Kohonen in 1982. The basic idea behind SOMs is the
clustering of data in such a way to produce a topographic
map from a high-dimensional input space to a
lower-dimensional feature space. In this manner, all of the
input data that are initially randomly localised in the input
feature space, and are then organised into clusters, each
representing a distinct feature of the input data. Hence, the
IET Signal Process., 2013, Vol. 7, Iss. 1, pp. 25–46
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SOMs are capable of distinguishing between the main
characteristics of the input data presented to them [22, 51, 87].
The SOMs achieve this through an unsupervised learning

process, which therefore takes place without having
available, any target output to compare with. Hence, a
substantial number of samples are required, for the SOM
network to be trained adequately. Basically, the SOMs
learning algorithm consists of three steps. The first step is
the competitive learning process, where the similarity
between the neurons in the output layer, and the input
pattern presented to the network, is computed according to
a pre-determined function, which is normally the Euclidean
distance. In the second step the lateral inhibition approach
is employed and finally there is the adaptation of
the synaptic weights, as shown in (14), where the
synaptic weight vector wj(n) of neuron j at time n, is
updated to wj(n + 1) at time n + 1, and α(n) and hj,i(x) are the
learning rate parameter and neighbourhood function,
respectively [87, 88].

wj(n+ 1) = wj(n)+ a(n)h j,i(x)(n) x− wj(n)
( )

(14)

The work presented in [89] proposes the implementation of an
SOM with the use of wavelet transforms for the task of vowel
recognition. The designed system, referred to as the wavelet
SOM (WSOM), uses a SOM to model the input data and
adapt wavelets according to the resultant SOM mapping.
With WSOM an accuracy of 55% was achieved for the task
of vowel recognition.
Another research proposes the use of SOMs with HMMs,

in order to make the designed system adequate for real-time
applications [22]. Hence, after forming the required HMM
models, these were clustered with an SOM. Therefore
during the classification process, first the ideal SOM cluster
was chosen, and then a HMM from the corresponding
cluster is adopted as the final model. The proposed system
was evaluated on a speaker-dependent spoken digits
recognition task.
SOMs were also used to change variable length feature

vectors to fixed length, as presented in [90]. The designed
system uses the MLP for classification, and as mentioned
earlier, MLP are not capable to handle variable length
feature vectors. Hence, SOMs are employed at the
pre-processing stage, in order to adjust the length of the
feature vectors to a predefined fixed length, before being
fed to the MLP for recognition.
A recent research that adopts the SOMs for the task of ASR

is presented in [51]. The basic SOM is modified into a
supervised SOM, consisting of an input layer, a competitive
layer and an output layer. Four different features, the
LPCC, the MFCC, the pitch, and the intensity, were
considered at the feature extraction stage of the ASR model.
The designed system is evaluated with 12 Indian words
from five different speakers. The accuracies obtained from
the five different speakers were analysed independently.
Considering the mean-SOM performance, and the
median-SOM performance with respect to the accuracies
obtained from all the speakers, the vocal intensity feature
obtained the highest recognition rate. The accuracies
obtained from the mean-SOM and the median-SOM for the
intensity features are 98.17 and 98.54%, respectively. As
regards to the LPCC, the MFCC and the pitch features, the
three of them achieved approximately an accuracy of 89%.
IET Signal Process., 2013, Vol. 7, Iss. 1, pp. 25–46
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As can be noted from the researches discussed above with
respect to the implementation of SOMs for ASR applications,
there is still ample of work to be carried out. Until now, SOMs
have been evaluated only with small vocabularies and a small
amount of speakers.

2.2.2.3 Radial basis functions: An RBF architecture,
basically consists of three layers: the input layer, the hidden
layer and the output layer. The key element of an RBF
model lies in the procedure performed in the hidden layer,
where a Gaussian function is utilised. The concept behind
an RBF network is the generation of clusters based on the
patterns present in the input data. The relationship of an
unseen input to the clusters formed is then computed by
means of the Gaussian function from the centres of these
clusters. Hence, the output of an RBF network, which
consists of H nodes in the hidden layer, for an input x, is
defined by

y =
∑H−1

h=1

whfh(x) (15)

where wh are the linear weights, and φh is the Gaussian
function, which can be further defined as

fh = e ‖x−ch‖/2s2h
( )

(16)

where ch and σh are the centre and width of the Gaussian
function, respectively. In recent years, RBFs are becoming
popular and are being widely used in different applications.
As a matter of fact, RBFs are also proving to be a good
alternative to the present popular MLPs [91].
A recent research which compares the implementation of

RBFs to MLPs, for the task of isolated word recognition is
presented in [91]. The proposed ASR system employs the
LPCC for feature extraction, and analysis an RBF network
and an MLP network for the classification stage. The
designed system was evaluated on six English words
spoken by six speakers. The accuracies obtained for the
MLP and RBF networks are 96 and 98.69%, respectively.
Additionally, when compared to MLP, the training and
testing speeds of the RBF architecture are faster.
The work presented in [92] proposes an implementation of

the RBF with HMMs, for the task of word recognition in a
continuous speech environment. The proposed ASR system
first extracts features from the inputted speech signal
through the use of cepstrum analysis, and these features are
then fed to the hybrid HMM–RBF model. With this hybrid
approach, an HMM is constructed for each word in the
database, and a target value is associated with each
HMM. Afterwards, for each of these target values, the
optimum number of neurons in the hidden layer of the RBF
network had to be found. For the classification of ten
different words, the highest accuracy was obtained with
eight neurons in the hidden layer, achieving an accuracy of
80%.
An implementation of the integration of RBFs with a

wavelet transform was also proposed for noise robust ASR
[93]. In this research, the standard RBF network is
modified such that instead of using the common RBF
activation function, a wavelet-based function is used. In
this manner, the modified RBF network will benefit from
the characteristics of the wavelet transforms, which make
them highly robust to noise signals. This new approach
was evaluated for the task of word recognition using
35
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different amount of words from 16 speakers, in different
SNR environments. The results obtained from the designed
wavelet-RBF network, are superior to the ones obtained
from a standard RBF architecture, for all the different
SNRs considered. However, as the amount of words
increased, the accuracy of the wavelet-RBF network
decreased almost reaching the ones obtained with the RBF
network. Hence, for large vocabularies it would be better
to opt for the standard RBF network implementation, since
at a cost of increased complexity with the wavelet-RBF
network, negligible improvement in the accuracies was
obtained.

2.2.2.4 Recurrent neural network: An RNN basically
consists of three layers: the input layer, the hidden layer and
the output layer. The concept behind RNN is the
employment of feedback connections, either at the hidden
or output layers. The output from the respective nodes, are
multiplied by the corresponding weight, and fed back to the
node itself. As a result, the state of a node is dependent not
only on the present input, but also on the past state of the
node [94, 95].
The RNN was also able to achieve better results than the

MLP. Nonetheless, the training algorithm of the former
approach is more complex, and also sensitive to any
changes [94]. The work presented in [95] alters the MLP,
which is a feed-forward network, into an RNN, by adding
feedback connections either at the hidden or output layers.
In this manner, this new MLP structure is able to handle the
time variation of speech signals. In this research, two
experiments were studied. The first method consists in
classifying all the phonemes with only one network,
whereas in the second experiment, the phonemes are
grouped into six categories, based on the phonemes’ types,
and a separate RNN–MLP network is trained for each
category. The proposed system was evaluated with 33
phonemes from the Japanese language, spoken by a male
speaker. In both experiments, the RNN–MLP achieved
better results than the conventional MLP. Apart from this,
the RNN–MLP structure that has feedback connections at
the output layer performed better than the configuration
that has feedback connections at the hidden layer. In the
first experiment, the RNN–MLP obtained an increase in the
accuracy of 16.4%, when compared with the MLP.
However, in the second experiment, all networks were able
to achieve higher recognition rates. Nonetheless, the RNN–
MLP was still able to surpass the MLP, with an accuracy of
10.6%. Another research that gives a comparison of the
RNN and MLP networks is presented in [96]. In this
research, the baseline RNN was improved by applying new
training principles, based on deep learning, and by applying
also second-order optimisation techniques. The Aurora2
corpus was employed for evaluation, and the results
obtained confirmed that the RNN was able to achieve better
results than the MLP. For the recognition of phonemes, the
RNN outperformed the MLP, by an accuracy of
approximately 7%. The proposed RNN network was also
analysed in different SNR environments, and again the
RNN was able to achieve lower error rates when compared
to the MLP.
The RNN were also employed along with the probabilistic

neural networks (PNN), for the task of speaker-independent
phoneme recognition of Indian English speech [97]. The
designed system employs first the PNN, in order to
recognise to which category the inputted phoneme belongs
to, and then the RNN is utilised to recognise exactly which
36
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phoneme it is. With this method, the authors were able to
achieve an accuracy of 98%.

2.2.2.5 Fuzzy neural network: The FNN is based on the
merging of fuzzy systems with neural networks. Thanks to
fuzzy systems, a membership function is employed, in
which an element is mapped to a proper degree of
membership. This is optimal when it comes to speech
recognition applications, since sounds in speech signals do
not have clear boundaries [45]. Apart from this, an ANN is
highly dependent on the amount of training data available.
If this amount is not enough to train the network
adequately, this may result in a poor-quality classifier.
However, with the utilisation of FNN, the network will be
able to converge during the learning process, resulting in
better performance [98].
As with other neural networks, FNN can be employed

either independently or as a hybrid, along with another
technique. An example of a hybrid system, which includes
an FNN, is presented in [45]. The proposed hybrid system
consists of a wavelet transform, a CDHMM, and finally an
FNN. The designed system was evaluated with a word list
of 50 computer commands. From the results obtained, it
can be concluded that when compared to a CDHMM
system, the proposed hybrid architecture is more robust
when it comes to noisy environments. As a matter of fact,
the proposed approach was able to achieve an improvement
in accuracy of 15.2%. However, in clean speech
environments, the CDHMM performed better, with a
positive difference of 7.6%, when compared with the
proposed hybrid system.
A FNN-based system, which is widely employed in ASR

systems, is the adaptive neuro fuzzy inference system
(ANFIS) [98, 99]. This system applies a number of fuzzy
inference techniques for data classification. The work
presented in [98], considers the implementation of the
ANFIS, for recognition of isolated Persian words. First, an
SOM and a linear vector quantisation (LVQ) network are
used for clustering of the input data, and then the ANFIS is
employed for classification. The results obtained showed
that classification with ANFIS, achieved better results,
when compared with the conventional FNN. Another
research which applies the ANFIS for speech recognition is
presented in [99]. This time, the ANFIS was used for
classification of speaker-independent isolated Malay digit
speech signals, and a recognition rate equal to 85.24% was
achieved. Although the above researches stated that good
results were obtained with the ANFIS, none of these
researches provided any comparison of the proposed
systems with other ANNs.

2.2.3 Support vector machines: Recently, SVMs are
also being adopted in ASR architectures, either
independently, or as a hybrid architecture with HMMs
[100–102]. The concept behind SVMs is the construction of
a hyperplane, as the decision surface, such that the margin
of separation between different classes is maximised. Under
this condition, the resultant decision surface is defined as
the optimal hyperplane. The decision surface can be defined
as shown in (17), where w is the weight vector, b is the
bias value and φ(xi) is the kernel function. Different kernel
functions are used to map the input feature space to a
higher-dimensional feature space, where the different
classes are assumed to be linearly separable. The most
popular kernel functions are the linear function, the
polynomial function, the RBF and the two-layer perceptrons
IET Signal Process., 2013, Vol. 7, Iss. 1, pp. 25–46
doi: 10.1049/iet-spr.2012.0151



www.ietdl.org

[103].

f (xi) = wT × f(xi)+ b (17)

The choice of the optimal hyperplane is highly dependent on
a small subset of training data, referred to as support vectors.
These support vectors are those data points that lie closest to
the decision surface. For non-separable data, the construction
of a decision surface without any classification errors is not
possible. Nonetheless, an optimal hyperplane that minimises
the probability of classification errors can be found [102–
104]. For further theoretical details, interested readers are
referred to [103, 104].
The two major problems with SVMs for ASR applications

are the inability of handling variable inputs, and the high
computational cost in classifying more than two classes at
once. Over the past decades, a lot of research has been
carried out in order to come out with the ideal solutions. In
the following, various researches that tried to tackle the
above two problems are discussed.
Numerous researchers came out with different approaches

on tackling the problem of SVMs in classifying more than
two classes [105–108]. However, the most popular
approaches are those based on the reduction of a multiclass
problem into a set of binary classes SVMs. The three
multiclass SVMs methods that are extensively employed are
namely the one-against-all, the one-against-one and
the directed acyclic graph SVM (DAGSVM) [101, 102,
108–110].
With the one-against-all method, the multiclass problem is

divided into a number of binary SVM classifiers, equal to the
number of classes, which have to be distinguished. Each
binary classifier constructs a hyperplane between its
corresponding class and all the other classes. On the other
hand, the one-against-one method, constructs a binary SVM
classifier for each possible pair of classes, thus separating
each class from each other. For both the one-against-all and
one-against-one methods, a majority voting scheme is
generally employed, in order to decide the output class for
a given input [105, 108]. Comparing these two approaches,
although the one-against-one method requires a higher
number of binary SVMs classifiers than the one-against-all
method, the size of the training dataset needed for each
binary SVM for the one-against-one method is lower. Apart
from this, in a one-against-one approach, if the two classes
corresponding to a classifier are rarely required to be
distinguished from each other, the corresponding binary
SVM classifier can be ignored. All of this results in the
one-against-one method having a lower computational cost
[101, 103].
A drawback with multiclass SVMs being based on binary

SVMs classifiers, is the unclassifiable regions problem.
Unclassifiable regions are those regions in the feature space,
undecided to which class they belong to. For the
one-against-all method, this problem is solved through
either the use of continuous decision functions or the
implementation of fuzzy SVMs. Both methods are
comparable with each other as regards to system’s
accuracies. However, the former approach is simpler to
implement. As regards to the one-against-one method, the
problem of unclassifiable regions is solved through the
utilisation of the DAGSVM approach [111, 112]. In fact,
the DAGSVM method is an improvement on the
one-against-one method. The only difference between these
IET Signal Process., 2013, Vol. 7, Iss. 1, pp. 25–46
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two approaches is in the classification phase. Instead of a
majority voting scheme, the DAGSVM utilises a rooted
binary directed acyclic graph, where each node is a binary
SVM. The resultant classification time is also reduced,
when compared with the one-against-one method [107, 111].
Looking now at the inability of SVMs in handling

variable input vectors, various approaches were proposed as
a solution [102, 113]. Two widely used methods are the use
of feature extraction techniques [102, 110] and HMMs
[103, 113, 114].
The first approach is based on the employment of a feature

extraction technique, in order to obtain a fixed length feature
vector representing the speech signal, and present these
feature vectors to the SVMs. An example of this approach,
based on phoneme classification, is presented in [110]. The
MFCC were used at the feature extraction stage, and the
one-against-one method with majority voting was employed
for classification. The designed system was evaluated on the
TIMIT database, and compared with an HMM. With an
HMM an accuracy of 73.7% was obtained, whereas with
the designed SVM-based system an accuracy of 77.6% was
achieved, resulting in an increase of approximately 4%.
Hence, the SVM was even able to achieve a better accuracy
than the HMMs.
Next approach is based on the employment of HMMs.

When implementing a hybrid HMM–SVM system, two
important issues have to be taken care of: the segmental
modelling and the posterior estimation. Generally, with
segmental modelling, a phoneme is divided into three
segments and the ratio 3–4–3 is assumed. As regards to the
posterior estimation, the Platt’s posterior probabilities are
usually employed, in order to change the output given by
an SVM, which is usually a distance measure of the
separation between the data point to be classified and the
decision function, to a probabilistic value [103, 108, 114].
The work proposed in [101] utilises the one-against-one
method, but instead of the majority voting scheme, the
Platt’s posterior probabilities are employed. These
probabilities are then used in an HMM as the emission
probabilities, instead of GMMs. After evaluating the
designed ASR model on the DARPA Resource
Management (RM1) corpus, the hybrid HMM–SVM
obtained a reduction in the word error rate of up to 26%,
when compared with the HMM–GMM baseline model.
As can be noticed, in recent years, researchers are also

proving that the SVMs are also able to obtain either
comparable or even better results than the well renowned
HMMs. The work presented in [100], discusses the
implementation of a structured SVM system, which is an
extension of the baseline SVM system, and shows that
better results can be obtained, when compared with HMMs.
The designed system was evaluated with the TIMIT
Corpus, where the total number of phoneme classes was
reduced to 39 labels, according to the CMU/MIT standards.
Different features were considered, and the structured SVM
was able to achieve a slight improvement in the accuracy of
1.33%, with respect to the HMMs. Another recent research,
in which the SVMs were compared with the HMMs, is
presented in [115]. In this research, the SVMs were
constructed based on the error-correcting output codes
(ECOC), in which the division of multiclass methods into
binary classifiers, is expressed in terms of matrix codes.
Four different ECOC–SVM methods were analysed, all of
which employed the RBF kernel. For evaluation, different
vocabulary sizes of isolated words for the Korean language
were utilised. In addition, apart from considering clean
37
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speech, white Gaussian noise was also added to the testing
samples, in order to evaluate the system at different SNR
values. The results obtained showed that all the ECOC–
SVM methods outperformed the HMMs, with the
one-against-one method performing best, achieving
approximately an improvement in the accuracy of 2–6%,
depending on the vocabulary size and SNR value.
SVMs were also proved to perform better than ANNs. The

superiority of SVMs mainly results from the fact that SVMs
are based on structural risk minimisation (SRM). Owing to
this, SVMs are not prone to over training and local minima
problems, as is the case with ANNs [103]. The work
presented in [116] presents a comparison of an SVM
system, employing the one-against-all method with the RBF
kernel, and an MLP network, for the recognition of 12 Thai
vowels, spoken in isolation. The accuracies obtained were
equal to 82.72 and 87.08%, for the MLP and SVM
systems, respectively. In addition, the processing time for
the training phase of the SVM system was shorter than that
of the MLP. Another research that considered the
recognition of isolated vowels is presented in [117]. This
time 11 vowels of the British English language were
considered. For the SVM system, the one-against-one and
one-against-all methods were considered, and each of them
was evaluated with both the linear and RBF kernels. As for
the ANN, a three-layered ANN with different number of
nodes in the hidden layer was considered. From the results
obtained, it can be concluded that the ANN was able to
perform better than the SVM, when the linear kernel was
considered. The ANN obtained an improvement in the
recognition rates of 5.8 and 6.1%, when compared to the
one-against-one and one-against-all methods, respectively.
However, when the SVM architectures were considered
with the RBF kernel, these outperformed the ANN. The
one-against-one and one-against-all methods were able to
achieve an increase in the accuracy of 15.6 and 18.2%,
respectively. A comparison of the SVM and ANN was also
evaluated for the Hungarian numbers, with 28 phoneme
classes [118]. Different feature extraction techniques were
analysed, with both the SVM and ANN systems. The
results obtained were approximately the same, for both the
SVM and ANN systems. Nonetheless, the SVM system was
able to achieve the highest recognition rate, with the
Kernel-LDA feature extraction technique, which was
approximately 2% higher than that achieved by the ANN.
One more research that obtained comparable results
between an SVM- and ANN-based systems, is presented in
[119]. In this research, the SVM and an MLP network,
were considered as hybrid architectures, along with the
HMMs. Both systems were evaluated with the SpeechDat
Spanish database, for large vocabulary continuous speech
recognition.
Thanks to their generalisation capability, SVMs have

already shown their ability in classification of speech
signals [115, 120]. In fact, over the past years, numerous
researches proved the superiority of SVMs over ANNs, but
most importantly, SVMs were also able to obtain either
comparable or even better results than the well-renowned
HMMs.

2.3 Language model

Knowledge of the language being spoken is necessary for a
spoken language system, in order to produce meaningful
representations of the input speech signal [19]. With such
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knowledge, comprehensible human-like speech recognition
can be obtained.
This knowledge can be divided into a number of levels.

Starting from the lower level up to the higher level, the
levels of linguistic analysis are as follows [19]:

1. Phonology: This level incorporates the knowledge about
the linguistic sounds, within and across words. The
variations in pronunciation, when words are from a
continuous speech environment, are also taken care of at
this level.
2. Morphology: Handling of the meaning of the components
making up a word is dealt with at this level.
3. Lexical: This level focuses on the interpretation of the
meaning of the words individually.
4. Syntactic: At this level, the words are analysed in the
context of a sentence to determine the grammatical structure
of the sentence. Hence, this level provides the knowledge
with respect to the structural relationships between the words.
5. Semantic: All the possible meanings of a sentence are
determined within this level.
6. Discourse: At this level, text longer than a sentence is
considered. Hence, this level considers the meaning of the
whole text.
7. Pragmatic: Within this level, world knowledge and
understanding of the intentions, plans and goals of the
speaker are required. Hence, at this level one also considers
the subject on which the speaker is speaking about, when
deciding on the interpretation of a particular word, if this
word has several possible meanings.

All of the above levels can be implemented in an ASR
system through the use of natural language processing
(NLP). NLP consists of various computational techniques,
which consider linguistic analysis to obtain human-like
language processing. It has been shown that humans
normally utilise all of the above levels. However, an NLP
system may utilise one or more of the above levels, but not
necessarily all of them. This can be deduced from the
different NLP applications available. Nevertheless, the more
levels of linguistic analysis an NLP system employs, the
more the system will be capable of producing proper speech
recognition. The amount of levels required are determined
according to where the NLP is going to be applied.
However, the lower levels of linguistic analysis are those
which are widely studied and implemented [10, 19].
Different approaches on how to integrate an NLP to an

ASR can be sorted into the following three categories [121]:

1. First the ASR model converts the speech signal into a
sequence of phonemes or words, and afterwards the NLP
attempts to understand the given words.
2. The ASR model outputs more than one possible
representation of the speech signal. These are then analysed
with an NLP and the best one is chosen.
3. The ASR model and the NLP are combined, such that the
ASR model can make use of the information and constraints
provided by the NLP.

A popular application is that of a dictionary, which consists
of a list of all possible words that one might encounter in a
particular application, along with their corresponding
pronunciations. Current spoken language systems have
limited vocabularies, since this is dependent on the
available power and memory space of the central processing
unit being used. As a result, one might encounter
IET Signal Process., 2013, Vol. 7, Iss. 1, pp. 25–46
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Table 1 Advantages and disadvantages of feature extraction techniques

Feature
extraction
technique

Advantages Disadvantages

MFCC † provides good discrimination [8]
† low correlation between coefficients [8]
† not based on linear characteristics; hence, similar
to the human auditory perception system [8, 10]
† important phonetic characteristics can be
captured [8]

† low robustness to noise [8, 32]
† in a continuous speech environment, a frame may not
contain information of only one phoneme, but of two
consecutive phonemes [27, 32]
† limited representation of speech signals since only the
power spectrum is considered, ignoring the phase spectrum
of speech signals [8, 24]

DWT † considers also temporal information present in
speech signals, apart from the frequency
information [27]
† able to perform efficient time and frequency
localisations [8, 39, 44]
† successfully used for de-noising tasks [8, 45]
† capable of compressing a signal without major
degradation [8]

† not flexible since the same basic wavelets have to be
used for all speech signals [8]

WPT † same as DWT, but WPT shows also further detail
present in the high frequency bands [16]

† not flexible since the same basic wavelets have to be
used for all speech signals [8]

LPC † spectral envelope is represented with low
dimension feature vectors [8, 91]
† good source-to-vocal tract separation is obtained
[8]
† LPC method is simple to implement and
mathematically precise [8]

† linear scales are not adequate for the representation of
speech production or perception [10]
† Feature components are highly correlated [8]
† cannot include a priori information on the speech signal
under test [8]

LPCC † same as LPC, but thanks to the cepstral analysis,
the feature components are decorrelated [130]
† increase in robustness when compared to LPC [8]

† linear scales are not adequate for the representation of
speech production or perception [10]
† cannot include a priori information on the speech signal
under test [8]

PLP † reduction in the discrepancy between voiced and
unvoiced speech [8]
† PLP peaks are reasonably independent to the
length of the vocal tract [8]
† resultant feature vector is low-dimensional [8]
† based on short term spectrum of the speech
signals [8]

† resultant feature vectors are dependent on the whole
spectral balance of the formant amplitudes [8]
† spectral balance is easily altered by the communication
channel, noise, and the equipment used [8]

RASTA–PLP † spectral components that change slower or
quicker than the rate of change of the speech signal
are suppressed [8]
† robust [8, 10]

† poor performance in clean speech environments [57]

VQ † reduction in the required memory storage size for
the spectral analysis information [8]
† reduction in the computational cost for the
calculation of similarity between feature vectors [8]
† discrete representation of speech signal [8]
† fast training speed [42]

† training time increases linearly with increase in
vocabulary size [42]
† quantisation error in the discrete representation of speech
signals [42]
† temporal information is ignored [42]

PCA † reduction in the feature vector’s size, while
retaining much of the significant information [131]
† robust [59, 60]

† computationally expensive for high-dimensional data [8]

LDA

† maximises the distance between classes, but
minimises the within class distance [132]
† robust [133]

† sample distribution is assumed a priori to be Gaussian
[63]
† class samples are assumed to have equal variance [63]
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out-of-vocabulary (OOV) words, which the ASR system will
either reject or consider it as an error. The OOV words of an
ASR system can be reduced by increasing the size of the
training dataset. The lower the OOV rate is, the more
precise the spoken language system will be [10, 122]. A
recent research that tackles the problem of OOV words, for
the Japanese language, is presented in [122]. In this
research, a phoneme recogniser that extracts OOV words to
reduce the OOV rate is presented.
As further advances are made in the area of ASR, the

integration of language models and search techniques are
becoming more prominent, especially when it comes to
large vocabulary speech recognition applications. Owing to
the various possible speech domains, the computational cost
of language models increases exponentially, as the
vocabulary size increases. This results from the fact that
speech signals do not follow strictly a set of grammatical
rules, and speaking style, regional and social dialects, need
to be considered as well. Hence, a good language model
needs to consider all these possibilities, but at the same
time, it needs to be compact enough, for adequate real-time
speech recognition [3, 123]. Owing to the various language
models available, a set of criteria are required, in order to
choose the optimal language model for the domain that is
being considered. Some examples of such criteria are
perplexity, average log likelihood, cross entropy and
resultant accuracy [123, 124].
A language model defines a set of constraints on the words

available in the vocabulary set, as well as their corresponding
sequences. As a result, the choice of a language model
determines also the resultant search space, and consequently
the search technique to be used afterwards. Mainly, there
are two types of language models: static and dynamic
language models. A widely renowned static language
technique is the N-gram model. In most cases, either
bigrams or trigrams are considered, with the latter model
performing best, since it entails more information [123]. A
recent research that considered N-gram language models in
an ASR system is presented in [23]. The language model
considered estimates the probability of all possible word
sequences, for a bigram language model. This system was
evaluated with the TIMIT database, and the results obtained
showed that with bigram language models, the phoneme
accuracy was increased by approximately 3%. Another
research [125], considered also the use of N-gram models
for the reduction of OOV words.
A drawback of static language models is that such models

are not capable to adapt in different domains. In this case, it is
better to opt for a dynamic language model instead, since with
dynamic language models the word probabilities are
estimated on the speech analysed so far, and hence the
model can adapt if new speech domains are considered.
Examples of dynamic language models are long-distance
N-grams, trigger-pairs, cache models and tree-based models
[123].
After selecting which language model is going to be

employed, a decoding search technique needs to be chosen,
in order to select the best hypothesis based on a specific
number of criteria. This is done by pruning those
hypotheses, which have the lowest scores, through the use
of a pruning algorithm [123, 126]. As a result, such
methodologies are referred to as suboptimal search
decisions. Two search algorithms that are widely used
nowadays are the Viterbi search and N-best search
algorithms. Starting with the Viterbi search technique, in
this approach all hypotheses correspond to the same portion
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of speech, and hence these can be directly compared with
each other.
The work presented in [127] implements an ASR system

based on HMM for the task of speaker independent
continuous speech recognition, with a large vocabulary. The
proposed system generates a word transcription dictionary
based on the word transcriptions available in the TIMIT
dictionary, through the use of a dictionary compression
scheme using a log-likelihood distance measure. This
dictionary is then used in the Viterbi algorithm for sentence
decoding. A word pair grammar is also utilised for context
dependency by smoothing the transition between the words.
Without the use of the dictionary and grammar information,
a word accuracy of 60.1% was achieved. However, this
accuracy was then further increased to 92.2%, with the
addition of the dictionary and grammar information.
Nonetheless, even for a medium-sized vocabulary, a
complete Viterbi search is computationally expensive.
Hence, a modification of the Viterbi search technique,
referred to as the Viterbi beam search, is usually employed.
With a beam search, only those hypotheses that fall within
a certain range of the most probable hypothesis are
considered [123, 128]. Further modifications for the Viterbi
beam search techniques were also proposed. One such
research is presented in [128], where a beam search ranking
curve is identified in order to further reduce the
computational time. Another recent research [129], presents
an adaptive Viterbi beam search, in which the voice activity
model at different stages is analysed. When compared to
the conventional Viterbi beam search, an improvement in
search efficiency of 35.77% was achieved.
Moving on to the second search technique, the N-best

search can be seen as an extension of the Viterbi search
technique, with the only difference that instead of choosing
only the best hypothesis, with the N-best search approach,
the n-best hypotheses are considered. The main drawback
of the N-best search technique is that short hypotheses are
more likely to be chosen, since longer sentences will have
more errors, resulting in these hypotheses ending up with
lower scores. For this reason, different modifications were
proposed in order to make this search technique more
efficient. Such modifications optimise either the search
algorithm [123] or the pruning method that is used [126].
All of the above confirm that the advances in language

processing, mostly when it comes to large vocabulary
speech recognition, are of fundamental importance for the
development of ASR systems and future technologies. In
fact, it is believed that the ability of computers in
recognising and processing speech signals as human beings
will mark the arrival of truly intelligent technologies [18,
123].

2.4 Further comparison and discussion

To better understand and compare the ASR techniques
discussed above, the advantages and disadvantages of the
feature extraction techniques, the classification methods,
and the language models are listed in Tables 1–3,
respectively, along with some suggestions on the use of
these techniques.
Starting with the feature extraction techniques, Table 1

shows the advantages and disadvantages of the previously
discussed feature extraction approaches.
In past years, the feature extraction techniques were mainly

based on cepstral analysis, such as MFCC and LPC
techniques. As a matter of fact, the MFCC feature
IET Signal Process., 2013, Vol. 7, Iss. 1, pp. 25–46
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Table 2 Advantages and disadvantages of classification techniques

Classification
technique

Advantages Disadvantages

HMM † able to model time distribution of speech
signals [103]
† simple to adapt [68]
† capable to model a sequence of discrete or
continuous symbols [13]
† inputs can be of variable length [40]

† based on the assumption that the probability of being in a
particular state is dependent only on its preceding state,
ignoring any long-term dependencies [82]
† emission probabilities are arbitrarily chosen; hence, these
might not even represent properly the output probabilities of
the corresponding state [82]

ANN (in general) † good classifiers [16, 45]
† highly adequate for pattern recognition
applications [16, 45]
† self-organising [16, 45]
† self-learning [16, 45]
† self-adaptive in new environments [16, 45]
† robust [7]

† based on ERM; hence, prone to over training a local minima
problems [45, 103]

MLP † good discriminating ability [2] † unable to model time distribution of speech signals [2]
† inputs have to be of fixed length [2]
† able to deal with small vocabularies only [2]

SOM † no a priori information is required for training
a SOM [134]
† can easily adapt if a new sample is presented
to it [134]
† capable of parallel computation [134]

† SOM algorithm is not well defined mathematically; hence,
values for the network parameters need to be found by
trial-and-error [134]
† ordered mapping obtained after the training phase may be
lost when applied in real environments due to frequent
adaptations [134]

RBF † simple to implement [135]
† Good discriminating ability [135]
† robust [135]
† online learning ability [135]

† shift invariant in time [91]

RNN † able to model time distribution of speech
signals thanks to the feedback connections [95,
103]

† complex training algorithm [94]
† training algorithm is highly sensitive to any changes [94]

FNN † does not need large amount of samples
during the learning process [99]
† improves convergence speed [45, 99]
† not prone to local minima problems [45]

† unable to model time distribution of speech signals [45]

SVM (in general) † Based on SRM; hence, not prone to over
training and local minima problems [103]
† excellent classifiers [103]
† robust [103]
† able to deal with high-dimensional input
vectors [103]

† inputs need to be of fixed length [103]
† increase in computational cost as the number of classes to
be classified is increased [103]
† current SVM training algorithms are not capable of dealing
with huge databases [103]

one-against-all † low number of SVM binary classifiers [101] † large number of support vectors; hence, increase in the
required storage size [101]

one-against-one † most successful multiclass SVM method
[102]
† lowest computational time for training phase
[107]
† few support vectors [107]

† large number of SVM classifiers [101]
† problem of unclassifiable regions [111]

DAGSVM † lowest computational time for training phase
[107]
† fastest classification phase [107]
† no unclassifiable regions [111]
† few support vectors [107]

† generalisation capability is dependent on the structure of
the rooted binary directed acyclic graph [111]
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extraction technique was employed in numerous researches,
including but not limited to continuous phoneme
recognition and isolated word recognition, and it is still
widely used nowadays. However, ideally the MFCC
method should be employed only in clean environments
because of its low robustness to noise. Apart from this,
even though MFCC was also utilised in continuous speech
environments, it may perform better in isolated speech
environments since as stated in Table 1, one of its
drawbacks is that an MFCC frame may contain information
of more than one phoneme when considering continuous
speech environments.
In recent years, it is becoming more obvious the need to

consider also the temporal information of speech signals,
and not only the frequency information. This information is
not included in the MFCC and LPC techniques. As a result,
feature extraction techniques based on wavelet analysis are
becoming more popular, and thanks to these methods,
higher accuracies are being achieved. In fact, the DWT
have already proved to be superior to the well-known
MFCC. Two main methods that are based on wavelet
analysis are the DWT and the WPT, with the former one
performing the best. These two methods are mostly
employed for the task of phoneme recognition.
Another important point to keep in mind, when choosing a

feature extraction technique is the amount of memory storage
size available. For limited amount of storage, one must opt for
a feature extraction technique that can achieve good
performance with a small feature vector size, such as the
DWT. However, if one wants to work with a specific
extraction technique, such as the MFCC, which typically
results in a 39-dimensional feature vector, one may
combine either the VQ, PCA or LDA technique to the
feature extraction method being used in order to reduce the
dimensionality of the features extracted. The VQ, PCA and
LDA techniques can also be used independently for feature
extraction. However, in most cases these were used in
combination with other feature extraction techniques, in
order to reduce the memory storage size required while
maintaining the significant information available in the
features extracted. For example, the VQ approach was
employed with MFCC [58], and also DWT [5, 42], in
order to further improve the designed ASR system by
taking advantage of the clustering property of the VQ
approach. As for the PCA and LDA approaches, apart
from reducing the feature vector’s size, these also help in
increasing the robustness of the feature extraction stage
[59, 60, 133].
One last important issue to consider is whether the chosen

feature extraction technique is going to be applied in a clean
or a noisy environment. There are feature extraction
techniques, such as the MFCC, PLP and LPC, which
ideally are employed in clean speech environments,
whereas other approaches, such as the DWT, WPT and
LPCC, can be applied in both clean and noisy
surroundings. The latter methods can also be combined
with the MFCC, PLP or LPC techniques, in order to
increase their robustness if these still need to be employed
in noisy environments. Another approach that showed
excellent performance in noisy environments is the
RASTA–PLP. The RASTA–PLP proved its superiority over
the PLP, MFCC and LPC methods when it comes to noisy
environments. However, in clean speech environments the
performance of the RASTA–PLP is very low. Hence, the
RASTA–PLP should not be employed in clean speech
environments.
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Considering now the classification stage of an ASR system,
the advantages and disadvantages of the classification
techniques previously discussed are shown in Table 2. The
method that is widely renowned for classification of speech
signals is the HMM. The popularity of HMMs is mainly
attributed to their ability in modelling the time distribution
of speech signals, again confirming the importance of
temporal information of speech signals. However, although
huge improvements and significant recognition rates were
obtained with HMMs, these are still far from achieving an
optimal ASR system by themselves, due to their low
generalisation capability. Hence, various modifications were
proposed in order to improve the accuracies obtained by the
HMMs. These modifications are mainly the consideration of
ANNs and SVMs, which can be employed either
independently or as hybrids with the HMMs. In the past
years, ANNs were being employed more than the SVMs,
with the MLP being the most popular ANN architecture in
the field of ASR. Nevertheless, there were also other
architectures, these being the RBF and RNN architectures,
which performed better than the MLP. As a matter of fact,
the RNN architecture is similar to the MLP, with the only
difference of the addition of feedback connections in order
to be able to model the time distribution in speech signals,
which is one of the drawbacks present in an MLP
architecture. As for the SOM and FNN architectures, these
have also shown their potential in ASR applications, even
though these were not employed extensively. However,
although ANNs obtained good ASR accuracies, in recent

Table 3 Advantages and disadvantages of language model
techniques

Language
model
technique

Advantages Disadvantages

static † simple to
implement and
powerful [123]

† unable to adapt in
different domains
[123]
† only the very close
history of the word is
used [123]

dynamic † able to adapt to
new speech domains
[123]

† high computational
cost [123]

viterbi-beam
search

† a dynamic
programming
technique [123]
† when a principal
solution is not
present, a number of
possible solutions are
considered. On the
other hand, if a clear
best hypothesis
exists, few other
hypotheses need to
be considered [123]

† if a state occurs in
more than one path,
the corresponding
computation needs to
be calculated for each
path, resulting in an
increase in the
computational cost
[123]

N-best search † all hypotheses
within the specified
beam are considered
[123]

† short hypotheses
have a higher
probability to be
chosen [123]
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Table 4 Comparison between various ASR systems

Ref. Year Research work Speaker in/
dependent
(SI/SD)

Language Feature
extraction
technique

Classification
technique

Language
model

Accuracy,
%

[16] 2009 isolated word
recognition

SI Malayalam DWT MLP N/A 89.00
WPT 61.00

[23] 2010 context-independent
phoneme recognition

SI TIMIT Corpus –
39 classes

MFCC CDHMM Bigram 63.07

[26] 2011 continuous phoneme
recognition

SI TIMIT Corpus –
39 classes

MFCC HMM-MLP Bigram 77.83

[44] 2003 isolated word
recognition

SI English SD2
Corpus

MFCC HMM N/A 38.77
WPT 56.90

[45] 2009 isolated word
recognition

SI 50 English
words

Subband
MFCC

CDHMM-FNN N/A 89.50

[51] 2011 isolated word
recognition

SI Indian LPCC Modified-SOM N/A 88.05
MFCC 89.27

[83] 2011 continuous phoneme
recognition

SI TIMIT Corpus –
39 classes

PLP SMLP N/A 78.90

[84] 2002 isolated spoken digits SD Urdu MFCC MLP N/A 94.00
[85] 2009 isolated spoken digits SI Persian MFCC &

DWT
MLP N/A 98.00

[91] 2011 isolated word
recognition

SI six English
words

LPCC RBF N/A 98.69
MLP 96.00

[92] 2009 continuous word
recognition

SI ten English
words

cepstrum
analysis

HMM-RBF N/A 80.00

[110] 1999 continuous phoneme
recognition

SI TIMIT Corpus –
39 classes

MFCC SVM N/A 77.60

[101] 2005 word recognition SI DARPA RM1
Corpus

MFCC HMM-SVM RM
word-pair
grammar

94.10
years, SVMs showed their excellent classification
capabilities, proving to be superior to ANNs, but most
importantly researchers also showed that SVMs can
achieve, either comparable, or even better results than the
HMMs. As stated earlier, since the SVMs are inherently
binary classifiers, a multiclass method must be employed
for ASR applications. The most successful multiclass SVM
method is the one-against-one method, followed by the
DAGSVM.
Moving towards the last stage found in an ASR system, the

advantages and disadvantages of a number of language model
techniques are listed in Table 3. Nowadays, language models
are becoming more essential, since more research is being
carried out on large vocabulary continuous speech
recognition applications. Hence, a lot of work is being done
to further improve the language models and suboptimal
search techniques proposed so far, with the N-grams and
N-best search models being the most popular.
Concluding this review, a list of various speech recognition

systems is presented in Table 4. With years, the ASR research
area is focusing more on the implementation of large
vocabulary continuous speaker-independent speech
recognition. ASR systems are being oriented towards the
implementation of hybrid models, primarily HMM–SVM
hybrid architectures, in order to combine the capability of
modelling the time variation present in speech signals of
HMMs and the excellent classification ability of SVMs. As
for the feature extraction stage, there are still numerous
methods which are being employed, such as MFCC, LPCC
and DWT and RASTA–PLP for noisy environments, since
all of these approaches achieved good performance. Apart
from this, feature extraction techniques are also being
combined together, in order to benefit from the advantages
of both methods. A good example is the MFDWC method
[32, 41, 46], where the MFCC and DWT techniques are
combined together in order to increase the robustness of the
MFCC approach.
IET Signal Process., 2013, Vol. 7, Iss. 1, pp. 25–46
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3 Conclusion

This review paper gives a brief overview of the different
approaches which are widely used nowadays for the task of
ASR. An ASR system is mainly composed of three
components: feature extraction stage, classification stage
and a language model. Various feature extraction methods
were proposed, all of which achieved good performance. As
regards to the classification stage, the approach which is
widely used is the HMMs. Although, considerable
accuracies were obtained from ASR systems based on
HMMs, these are still far from achieving an optimal ASR
system by themselves. Hence, numerous hybrid models,
based on the concept of merging HMMs with another
approach were proposed. Initially, ANNs were being
employed with HMMs. However, in recent years, SVMs are
also being adopted in ASR systems, where numerous
researches proved the superiority of SVMs over ANNs, but
most importantly researchers also showed that SVMs can
achieve, either comparable or even better results than the
HMMs. The last component of an ASR system is the
language model. Knowledge of the language being spoken
is necessary, in order to produce meaningful representation
of the input speech signal. Advances in language
processing are of fundamental importance for the
development of ASR systems, mostly when it comes to
large vocabulary speech recognition.
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