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wi t h  t he introdu ct i on  of Apple’s Siri and similar 
voice search services from Google and Microsoft, 
it is natural to wonder why it has taken so long for 
voice recognition technology to advance to this level. 
Also, we wonder, when can we expect to hear a more 
human-level performance? In 1976, one of the authors 
(Reddy) wrote a comprehensive review of the state of 
the art of voice recognition at that time. A non-expert 
in the field may benefit from reading the original 
article.34 Here, we provide our collective historical 
perspective on the advances in the field of speech 
recognition. Given the space limitations, this article 
will not attempt a comprehensive technical review, 
but limit the scope to discussing the missing science 
of speech recognition 40 years ago and what advances 
seem to have contributed to overcoming some of the 
most thorny problems. 
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 key insights
 � �The insights gained from the speech 

recognition advances over the past 
40 years are explored, originating 
from generations of Carnegie Mellon 
University’s R&D.

 � �Several major achievements over  
the years have proven to work well  
in practice for leading industry  
speech recognition systems from  
Apple to Microsoft.

 � �Speech recognition will pass the  
Turing Test and bring the vision of  
Star Trek-like mobile devices to reality.  
It will help to bridge the gap between 
humans and machines. It will facilitate  
and enhance natural conservation  
among people. Six challenges need  
to be addressed before we can  
realize this audacious dream.
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Speech recognition had been a sta-
ple of science fiction for years, but in 
1976 the real-world capabilities bore 
little resemblance to the far-fetched 
capabilities in the fictional realm. 
Nonetheless, Reddy boldly predicted  
it would be possible to build a $20,000 
connected speech system within the 
next 10 years. Although it took longer 
than projected, not only were the goals 
eventually met, but the system costs 
were much less and have continued 
to drop dramatically. Today, in many 
smartphones, the industry delivers free 
speech recognition that significantly 
exceeds Reddy’s speculations. In most 
fields the imagination of science fic-
tion writers far exceeds reality. Speech 

recognition is one of the few excep-
tions. Moreover, speech recognition is 
unique not just because of its success-
es: in spite of all the accomplishments, 
additional challenges remain that are 
as daunting as those that have been 
overcome to date.

In 1995, Microsoft SAPI was first 
shipped in Windows 95 to enable ap-
plication developers to create speech 
applications on Windows. In 1999 the 
VoiceXML forum was created to sup-
port telephony IVR. While speech-
enabled telephony IVR was commer-
cially successful, it has been shown 
the “speech in” and “screen out” 
multimodal metaphor is more natu-
ral for information consumption. In 

2001, Bill Gates demonstrated such 
a prototype codenamed MiPad at 
CES.16 MiPad illustrated a vision on 
speech-enabled multimodal mobile 
devices. With the recent adoption of 
speech recognition used in Apple, 
Google, and Microsoft products, we 
are witnessing the ever-improved 
ability of devices to handle relatively 
unrestricted multimodal dialogues. 
We see the fruits of several decades of 
R&D in spite of remaining challeng-
es. We believe the speech community 
is en route to pass the Turing Test in 
the next 40 years with the ultimate 
goal to match and exceed a human’s 
speech recognition capability for ev-
eryday scenarios.I
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Here, we highlight major speech 
recognition technologies that worked 
well in practice and summarize six 
challenging areas that are critical to 
move speech recognition to the next 
level from the current showcase ser-
vices on mobile devices. More com-
prehensive technical discussions may 
be found in the numerous technical 
papers published over the last de-
cade, including IEEE Transactions on 
Audio, Speech and Language Processing 
and Computer Speech and Language, 
as well as proceedings from ICASSP, 
Interspeech, and IEEE workshops on 
ASRU. There are also numerous arti-

cles and books that cover systems and 
technologies developed over the last 
four decades.9,14,15,19,25,33,36,43 

Basic Speech Recognition
In 1971, a speech recognition study 
group chaired by Allen Newell recom-
mended that many more sources of 
knowledge be brought to bear on the 
problem. The report discussed six lev-
els of knowledge: acoustic, paramet-
ric, phonemic, lexical, sentence, and 
semantic. Klatt23 provides a review of 
performance of various ARPA-funded 
speech understanding systems initiat-
ed to achieve the goals of Newell report. 

By 1976, Reddy was leading a group 
at Carnegie Mellon University that 
was one of a small number of research 
groups funded to explore the ideas in 
the Newell report under a multiyear De-
fense Advanced Research Project Agen-
cy (DARPA)-sponsored Speech Under-
standing Research (SUR) project. This 
group developed a sequence of speech 
recognition systems: Hearsay, Dragon, 
Harpy, and Sphinx I/II. Over a span of 
four decades, Reddy and his colleagues 
created several historic demonstra-
tions of spoken language systems, 
for example, voice control of a robot, 
large-vocabulary connected-speech 
recognition, speaker-independent 
speech recognition, and unrestricted 
vocabulary dictation. Hearsay-I was one 
of the first systems capable of continu-
ous speech recognition. The Dragon 
system was one of the first systems to 
model speech as a hidden stochastic 
process. The Harpy system introduced 
the concept of Beam Search, which for 
decades has been the most widely used 
technique for efficient searching and 
matching. Sphinx-I, developed in 1987, 
was the first system to demonstrate 
speaker-independent speech recog-
nition. Sphinx-II, developed in 1992, 
benefited largely from tied parameters 
to balance trainability and efficiency 
at both Gaussian mixture and Markov 
state level, which achieved the highest 
recognition accuracy in DARPA-funded 
speech benchmark evaluation in 1992.

As per the DARPA-funded speech 
evaluations, the speech recognition 
word error rate has been used as the 
main metric to evaluate the progress. 
The historical progress also directed 
the community to work on more diffi-
cult speech recognition tasks as shown 
in Figure 1. On the latest switchboard 
task, the word error rate is approach-
ing an impressive new milestone by 
both Microsoft and IBM researchers 
respectively,4,22,37 following the deep 
learning framework pioneered by re-
searchers at the University of Toronto 
and Microsoft.5,14 

It was anticipated in the early 1970s 
that to bring to bear the higher-level 
sources of knowledge might require 
significant breakthroughs in artifi-
cial intelligence. The architecture of 
the Hearsay system was designed so 
that many semiautonomous modules 
can communicate and cooperate in 

What we did not know how to do in 1976.v

Statistical modeling and machine learning: Elaboration of HMM, context-dependent phoneme 
modeling, statistical smoothing and back-off strategies, DNN, semi-supervised learning, discriminative 
training such as Maximum Mutual Information Estimation (MMIE) and MPE

Training data and computing resources: Several orders of magnitude increase in the size of 
speech (thousands of hours) and text data (trillions of words) accompanied by the steadily increased 
distributed CPU and RAM resources 

Signal processing dealing with noisy environments: DNN-learned features, MFCC appropriate  
for Gaussian mixture models, lower-level raw features such as filterbanks appropriate for DNN, 
Cepstral mean subtraction, 1st and 2nd order delta features, online environment adaptation, and 
noise-canceling microphone/microphone array

Vocabulary size and dis-fluent speech: From thousands to millions of words supported by n-grams 
and RNN as the language model, explicit garbage models, and the flexibility to add new words with 
grapheme form 

Speaker independent and adaptive speech recognition: Mixture distributions, speaker training 
data across different dialects and populations, vocal tract normalization, Maximum a Posteriori (MAP), 
Maximum Likelihood Linear Regression (MLLR), and unsupervised speaker-adaptive learning

Efficient decoder: Time-synchronous Viterbi search and A* stack decoder with sophisticated pruning 
techniques, distributed implementation to support large-scale server-based runtime decoder

Spoken language understanding and dialog: Case-frame based robust parser, semi-Markov 
conditional random field (CRF), boosted decision tree, rule-based or Markov decision process-based 
dialog management, and recurrent neural networks for sentence understanding

Figure 1. Historical progress of speech recognition word error rate on more and more  
difficult tasks.10 The latest system for the switchboard task is marked with the green dot.
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a speech recognition task while each 
concentrated on its own area of exper-
tise. In contrast, the Dragon, Harpy, 
and Sphinx I/II systems were all based 
on a single, relatively simple modeling 
principle of joint global optimization. 
Each of the levels in the Newell report 
was represented by a stochastic pro-
cess known as a hidden Markov pro-
cess. Successive levels were conceptu-
ally embedded like nesting blocks, so 
the combined process was also a (very 
large) hidden Markov process.2 

The decoding process of finding 
the best matched word sequence W to 
match input speech X is more than a 
simple pattern recognition problem, 
since one faces a practically astronomi-
cal number of word patterns to search. 
The decoding process in a speech 
recognizer’s operation is to find a se-
quence of words whose correspond-
ing acoustic and language models 
best match the input feature vector se-
quence. Thus, such a decoding process 
with trained acoustic and language 
models is often referred to as a search 
process. Graph search algorithms, 
which have been explored extensively 
in the fields of artificial intelligence, 
operations research, and game theory, 
serve as the basic foundation for the 
search problem in speech recognition. 

The importance of the decoding 
process is best illustrated by Dragon 
NaturallySpeaking, a product that took 
15 years to develop under the leader-
ship of one of the authors (Baker). It 
has survived for 15 years through many 
generations of computer technology 
after being acquired by Nuance. Drag-
on Systems did not owe its success to 
inventing radically new algorithms 
with superior performance. The de-
velopment of technology for Dragon 
NaturallySpeaking may be compared 
with the general development in the 
same timeframe reviewed in this ar-
ticle. The most salient difference is not 
algorithms with a lower error rate, but 
rather an emphasis on simplified algo-
rithms with a better cost-performance 
trade-off. From its founding, the long-
term goal of Dragon Systems was the 
development of a real-time, large-vo-
cabulary, continuous-speech dictation 
system. Toward that end, Dragon for-
mulated a coherent mission statement 
that would last for decades that would 
be required to reach the long-term 

goal, but that in each time frame would 
translate into appropriate short-term 
and medium-term objectives: Produce 
the best speech recognition that could 
run in real time on the current genera-
tion of desktop computers.

What We Did Not Know in 1976
Each of the components illustrated 
in Reddy’s original review paper has 
made significant progress. We do not 
plan to enumerate all the different 
systems and approaches developed 
over the decades. Table 1 contains the 
major achievements that are proven 
to work well in practice for leading 
industry speech recognition systems. 
Today, we can use open research tools, 
such as HTK, Sphinx, Kaldi, CMU LM 
toolkit, and SRILM to build a working 
system. However, the competitive edge 
in the industry mostly benefited from 
using a massive amount of data avail-
able in the cloud to continuously up-
date and improve the acoustic model 
and the language model. Here, we 
discuss progress that enabled today’s 
voice search on mobile phones such 
as Apple, Google, and Microsoft Voice 
Search as illustrated in Figure 2.

The establishment of the statisti-
cal machine-learning framework, sup-
ported by the availability of computing 
infrastructure and massive training 
data, constitutes the most significant 
driving force in advancing the devel-
opment of speech recognition. This 
enabled machine learning to treat 

phonetic, word, syntactic, and seman-
tic knowledge representations in a 
unified manner. For example, explicit 
segmentation and labeling of phonetic 
strings is no longer necessary. Phonet-
ic matching and word verification are 
unified with word sequence generation 
that depends on the highest overall rat-
ing typically using a context-dependent 
phonetic acoustic model.

Statistical machine learning. Early 
methods of speech recognition aimed 
to find the closest matching sound 
label from a discrete set of labels. In 
non-probabilistic models, there is an 
estimated “distance” between sound 
labels based on how similar two 
sounds are estimated to be. In one 
form, probability models use an esti-
mate of the conditional probability of 
observing a particular sound label as 
the best matching label, conditional 
on the correct label being the hypoth-
esized label, which is also called the 
“confusion” probability. To estimate 
the probability of confusing each pos-
sible sound with each possible label 
requires substantially more training 
data than estimating the mean of a 
Gaussian distribution, another com-
mon representation. This method 
corresponds to the “labeling” part 
of the “segmentation and labeling” 
described in Reddy’s 1976 review, 
whether accompanied by segmenta-
tion or not, as was often done by the 
1980s for non-probability-based mod-
els. This distance may merely be a 

Figure 2. Modern search engines such as Bing and Google both offer a readily accessible 
microphone button (marked in red) to enable voice search the Web. Apple iPhone Siri, 
while not a search engine (its Web search is now powered by Bing), has a much larger 
microphone button for multimodal speech dialogue.
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score to be minimized. 
A pivotal change in the representa-

tion of knowledge in speech recogni-
tion was just beginning at the time 
of Reddy’s review paper. This change 
was exemplified by the representation 
of speech as a hidden Markov process. 
This is usually referred to with the 
acronym HMM for “Hidden Markov 
Model,” which is a slight misnomer 
because it is the process that is hid-
den not the model.2 Mathematically, 
the model for a hidden Markov pro-
cess has a learning algorithm with a 
broadly applicable convergence theo-
rem called the Expectation-Maximiza-
tion (EM) algorithm.3,8 In the particu-
lar case of a hidden Markov process, 
it has a very efficient implementation 
via the Forward-Backward algorithm. 
Since the late 1980s, statistical dis-
criminative training techniques have 
also been developed based on maxi-
mum mutual information or related 
minimum error criteria.1,13,21 

Before 2010, a mixture of HMM-
based Gaussian densities have typi-
cally been used for state-of-the-art 
speech recognition. The features for 
these models are typically Mel-fre-
quency cepstral coefficients (MFCC).6 
While there are many efforts in creat-
ing features imitating the human audi-
tory process, we want to highlight one 
significant development that offers 
learned feature representation with the 
introduction of deep neural networks 
(DNN). Overcoming the inefficiency 
in data representation by the Gauss-
ian mixture model, DNN can replace 
the Gaussian mixture model directly.14 
Deep learning can also be used to learn 
powerful discriminative features for a 
traditional HMM speech recognition 
system.37 The advantage of this hybrid 
system is that decades of speech rec-
ognition technologies developed by 
speech recognition researchers can be 
used directly. A combination of DNN 
and HMM produced significant er-
ror reduction4,14,22,37 in comparison to 
some of the early efforts.29,40 In the new 
system, the speech classes for DNN 
are typically represented by tied HMM 
states—a technique directly inherited 
from earlier speech systems.18

Using Markov models to represent 
language knowledge was controversial. 
Linguists knew no natural language 
could be represented even by context-

free grammar, much less by a finite 
state grammar. Similarly, artificial in-
telligence experts were more doubtful 
that a model as simple as a Markov pro-
cess would be useful for representing 
the higher-level knowledge sources rec-
ommended in the Newell report. 

However, there is a fundamental 
difference between assuming that lan-
guage itself is a Markov process and 
modeling language as a probabilistic 
function of a hidden Markov process. 
The latter model is an approximation 
method that does not make an as-
sumption about language, but rather 
provides a prescription to the de-
signer in choosing what to represent 
in the hidden process. The definitive 
property of a Markov process is that, 
given the current state, probabilities 
of future events will be independent of 
any additional information about the 
past history of the process. This prop-
erty means if there is any informa-
tion about the past history of the ob-
served process (such as the observed 
words and sub-word units), then the 
designer should encode that informa-
tion with distinct states in the hidden 
process. It turned out that each of the 
levels of the Newell hierarchy could be 
represented as a probabilistic func-
tion of a hidden Markov process to a 
reasonable level of approximation. 

For today’s state-of-the-art lan-
guage modeling, most systems still 
use the statistical N-gram language 
models and the variants, trained with 
the basic counting or EM-style tech-
niques. These models have proved 
remarkably powerful and resilient. 
However, the N-gram is a highly sim-
plistic model for realistic human lan-
guage. In a similar manner with deep 
learning for significantly improving 
acoustic modeling quality, recur-
rent neural networks have also sig-
nificantly improved the N-gram lan-
guage model.27 It is worth noting that 
nothing beats a massive text corpora 
matching the application domain for 
most real speech applications. 

Training data and computational 
resources. The availability of speech/
text data and computing power 
has been instrumental in enabling 
speech recognition researchers to 
develop and evaluate complex algo-
rithms on sufficiently large tasks. 
The availability of common speech 

corpora for speech training, develop-
ment, and evaluation, has been criti-
cal, allowing the creation of complex 
systems of ever-increasing capabili-
ties. Since speech is a highly variable 
signal and is characterized by many 
parameters, large corpora become 
critical in modeling it well enough for 
automated systems to achieve profi-
ciency. Over the years, these corpora 
have been created, annotated, and 
distributed to the worldwide com-
munity by the National Institute of 
Standard and Technology (NIST), the 
Linguistic Data Consortium (LDC), 
European Language Resources Asso-
ciation (ELRA), and other organiza-
tions. The character of the recorded 
speech has progressed from limited, 
constrained speech materials to huge 
amounts of progressively more realis-
tic, spontaneous speech. 

Moore’s Law predicts doubling the 
amount of computation for a given 
cost every 12–18 months, as well as a 
comparably shrinking cost of memo-
ry. Moore’s Law made it possible for 
speech recognition to consume the 
significantly improved computational 
infrastructure. Cloud-based speech 
recognition made it more convenient 
to accumulate an even more mas-
sive amount of speech data than ever 
imagined in 1976. Both Google and 
Bing indexed the entire Web. Billions 
of user queries reach the Web search 
engine monthly. This massive amount 
of query click data made it possible to 
create a far more powerful language 
model for voice search applications.

Signal and feature processing. A 
vector of acoustic features is comput-
ed typically every 10 milliseconds. For 
each frame a short window of speech 
data is selected. Typically each win-
dow selects about 25 milliseconds 
of speech, so the windows overlap in 
time. In 1976, the acoustic features 
were typically a measure of the magni-
tude at each of a set of frequencies for 
each time window, typically computed 
by a fast Fourier transform or by a fil-
ter bank. The magnitude as function 
of frequency is called the “spectrum” 
of the short time window of speech, 
and a sequence of such spectra over 
time in a speech utterance can be vi-
sualized as a spectrogram.31 

Over the past 30 years or so, modi-
fications of spectrograms led to sig-
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nificant improvements in the perfor-
mance of Gaussian mixture-based 
HMM systems despite the loss of raw 
speech information due to such modi-
fications. Deep learning technology 
aims squarely at minimizing such in-
formation loss and at searching for 
more powerful, deep learning-driven 
speech representations from raw data. 
As a result of the success in deep learn-
ing, speech recognition researchers are 
returning to using more basic speech 
features such as spectrograms and fil-
terbanks for deep learning,11 allowing 
the power of machine learning to au-
tomatically discover more useful repre-
sentations from the DNN itself.37,39 

Vocabulary size. The maximum vo-
cabulary size for large speech recogni-
tion has increased substantially since 
1976. In fact, for real-time natural 
language dictation systems in the late 
1990s the vocabulary size essentially 
became unlimited. That is, the user 
was not aware of which relatively rare 
words were in the system’s dictionary 
and which were not. The systems tried 
to recognize every word dictated and 
counted as an error any word that was 
not recognized, even if the word was 
not in the dictionary.

This point of view forced these sys-
tems to learn new words on the fly so 
the system would not keep making 
the same mistake every time the same 
word occurred. It was especially im-
portant to learn the names of people 
and places that occurred repeatedly 
in a particular user’s dictation. Signifi-
cant advances were made in statistical 
learning techniques for learning from 
a single example or a small number 
of examples. The process was made to 
appear as seamless as possible to the 
interactive user. However, the problem 
remains a challenge because model-
ing new words is still far from seamless 
when seen from the point of view of the 
models, where the small-sample mod-
els are quite different from the large-
data models. 

Speaker independent and adaptive 
systems. Although probability models 
with statistical machine learning pro-
vided a means to model and learn many 
sources of variability in the speech sig-
nal, there was still a significant gap in 
performance between single-speaker, 
speaker-dependent models and speak-
er-independent models intended for 

the diverse population. Sphinx intro-
duced large vocabulary speaker-inde-
pendent continuous speech recogni-
tion.24 The key was to use more speech 
data from a large number of speakers 
to train the HMM-based system. 

Adaptive learning is also applied to 
accommodate speaker variations and 
a wide range of variable conditions for 
the channel, noise, and domain.24 Ef-
fective adaptation technologies enable 
rapid application integration, and are 
a key to successful commercial deploy-
ment of speech recognition.

Decoding techniques. Architec-
turally, the most important develop-
ment in knowledge representation 
has been searchable unified graph 
representations that allow multiple 
sources of knowledge to be incorporat-
ed into a common probabilistic frame-
work. The decoding or search strate-
gies have evolved from many systems 
summarized in Reddy’s 1976 paper, 
such as stack decoding (A* search),20 
time-synchronous beam search,26 and  
Weighted Finite State Transducer 
(WFST) decoder.28 These practical de-
coding algorithms made possible large-
scale continuous speech recognition. 

Non-compositional methods include 
multiple speech streams, multiple prob-
ability estimators, multiple recognition 
systems combined at the hypothesis 
level such as ROVER,12 and multi-pass 
systems with increased constraints. 

Spoken language understanding. 
Once recognition results are avail-
able, it is equally important to extract 
“meaning” for the recognition results. 
Spoken language understanding (SLU) 
mostly relied on case grammars for 
representing sets of semantic con-
cepts during 1970s. A good example of 
putting the case grammars for SLU is 
exemplified by the Air Travel Informa-
tion System (ATIS) research initiative 
funded by DARPA.32,41 In this task, the 
users can utter queries on flight infor-
mation in an unrestricted free form. 
Understanding the spoken language 
is about extracting task-specific argu-
ments in a given frame-based semantic 
representation involving frames such 
as “departure date,” and “flight.” The 
slot in these case frames is specific to 
the domain involved. Finding the value 
of properties from speech recognition 
results must be robust to deal with in-
herent recognition errors as well as a 

Speech recognition 
is unique not  
just because  
of its successes: 
in spite of all the 
accomplishments, 
additional 
challenges remain 
that are as  
daunting as those 
that have been 
overcome so far.
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wide range of different ways of express-
ing the same concept. 

A number of techniques are used 
to fill frame slots of the application 
domain from the training data.30,35,41 
Like acoustic and language model-
ing, deep learning based on recurrent 
neural networks can also significantly 
improve filling slots for language un-
derstanding.38

Six Major Challenges
Speech recognition technology is 
far from perfect. Indeed, technical  
challenges abound. Based on what we 
have learned over the past 40 years, we 
now discuss six of the most challenging 
areas to be addressed before we can real-
ize the dream of speech recognition. 

There is no data like more data. 
Today we have some very exciting op-
portunities to collect large amounts 
of data, thus giving rise to “data del-
uge.” Thanks in large part to the Inter-
net, there are now readily accessible 
large quantities of everyday speech, 
reflecting a variety of materials and 
environments previously unavailable. 
Recently emerging voice search in mo-
bile phones has provided a rich source 
of speech data, which, because of the 
recording of mobile phone users’ ac-
tions, can be considered as partially 
“labeled.” Apple Siri (powered by Nu-
ance), Google, and Microsoft all have 
accumulated a massive amount of user 
data in using voice systems on their 
products.

New Web-based tools could be 
made available to collect, annotate, 
and process substantial quantities of 
speech in a cost-effective manner in 
many languages. Mustering the assis-
tance of interested individuals on the 
Web could generate substantial quan-
tities of language resources very effi-
ciently and cost effectively. This could 
be especially valuable for creating sig-
nificant new capabilities for resource 
“impoverished” languages.

The ever-increasing amount of data 
presents both an opportunity and a 
challenge for advancing the state of the 
art in speech recognition as illustrated 
in Figure 3, in which our Microsoft col-
leagues Li Deng and Eric Horvitz used 
the data from a number of published 
papers to illustrate the key point. The 
numbers in Figure 3 are not precise 
even with our best effort to derive a co-

hesive chart from data scattered over a 
period of approximately 10 years. 

We have barely scratched the sur-
face in sampling the many kinds of 
speech, environments, and channels 
that people routinely experience. In 
fact, we currently provide to our auto-
matic systems only a very small frac-
tion of the amount of materials that hu-
mans utilize to acquire language. If we 
want our systems to be more powerful 
and to understand the nature of speech 
itself, we need to make more use of 
it and label more of it. Well-labeled 
speech corpora have been the corner-
stone on which today’s systems have 
been developed and evolved. However, 
most of the large quantities of data are 
not labeled or poorly “labeled,” and la-
beling them accurately is costly. 

Computing infrastructure. The use 
of GPUs5,14 is a significant advancement 
in recent years that makes the training 
of modestly sized deep networks prac-
tical. A known limitation of the GPU 
approach is the training speed-up is 
small when the model does not fit in 
GPU memory (typically less than six 
gigabytes). It is recently reported that 
distributed optimization approach can 
greatly accelerate deep learning as well 
as enabling training larger models.7 
A cluster of massive distributed ma-
chines has been used to train a mod-
estly sized speech DNN leading to over 
10x acceleration in comparison to the 
GPU implementation. 

Moore’s Law has been a depend-
able indicator of the increased capabil-
ity for computation and storage in our 
computational systems for decades. 
The resulting effects on systems for 
speech recognition and understanding 

have been enormous, permitting the 
use of larger and larger training data-
bases and recognition systems, and the 
incorporation of more detailed models 
of spoken language. Many of the future 
research directions and applications 
implicitly depend upon continued ad-
vances in computational capabilities, 
which seems justified given the recent 
progress of using distributed comput-
er systems to train large-scale DNNs. 
With the ever-increased amount of 
training data as illustrated in Figure 3, 
it is expected to take weeks or months 
to train a modern speech system even 
with a massively distributed comput-
ing cluster. 

As Intel and others have recently 
noted, the power density on micro-
processors has increased to the point 
that higher clock rates would begin 
to melt the silicon. Consequently, 
industry development is currently fo-
cused on implementing microproces-
sors on multiple cores. The new road 
maps for the semiconductor industry 
reflect this trend, and future speed-
ups will come more from parallelism 
than from having faster individual 
computing elements. 

For the most part, algorithm de-
signers for speech systems have ig-
nored investigation of such parallel-
ism, partly because the advancement 
of scalability has been so reliable. Fu-
ture research directions and applica-
tions will require significantly more 
computation resources for creating 
models, and consequently research-
ers will need to consider massive dis-
tributed parallelism in their designs. 
This will be a significant change from 
the status quo. In particular, tasks 

Figure 3. There is no data like more data. Recognition word error rate vs. the amount  
of training hours for illustrative purposes only. This figure illustrates how modern speech 
recognition systems can benefit from increased training data.
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such as decoding, for which extremely 
clever schemes to speed up single-
processor performance have been 
developed, will require a complete 
rethinking of the algorithms. New 
search methods that explicitly exploit 
parallelism should be an important 
research direction. 

Unsupervised learning has been 
successfully used to train a deep net-
work 30-times larger than previously 
reported.7 With supervised fine-tuning 
to get the labels, DNN-based system 
achieved state-of-the-art performance 
on ImageNet, a very difficult visual ob-
ject recognition task. For speech rec-
ognition, there is also a practical need 
to develop high-quality unsupervised 
or semi-supervised techniques with 
a massive amount of user interaction 
data available in the cloud such as click 
data in the Web search engine. 

Upon the successful development 
of voice search, exploitation of un-
labeled or partially labeled data be-
comes feasible to train the underlying 
acoustic and language models. We can 
automatically (and “actively”) select 
parts of the unlabeled data for manual 
labeling in a way that maximizes its 
utility. An important reason for unsu-
pervised learning is the systems, like 
their human “baseline,” will have to 
undergo “lifelong learning,” adjust-
ing to evolving vocabulary, channels, 
language use, among others. There is 
a need for learning at all levels to cope 
with changing environments, speak-
ers, pronunciations, dialects, accents, 
words, meanings, and topics. Like its 
human counterpart, the system would 
engage in automatic pattern discovery, 
active learning, and adaptation. 

We must address both the learn-
ing of new models and the integration 
of such models into existing systems. 
Thus, an important aspect of learning 
is being able to discern when some-
thing has been learned and how to ap-
ply the result. Learning from multiple 
concurrent modalities may also be 
necessary. For instance, a speech rec-
ognition system may encounter a new 
proper noun in its input speech, and 
may need to examine textual contexts 
to determine the spelling of the name 
appropriately. Success in multimod-
al unsupervised learning endeavors 
would extend the lifetime of deployed 
systems, and directly advance our abil-

ity to develop speech systems in new 
languages and domains without oner-
ous demands of expensive human-
labeled data, essentially by creating 
systems that automatically adapt and 
improve over time. 

Portability and generalizability. An 
important aspect of learning is gen-
eralization. When a small amount of 
test data is available to adjust speech 
recognizers, we call such generaliza-
tion adaptation. Adaptation and gen-
eralization capabilities enable rapid 
speech recognition application inte-
gration. There are also attempts to use 
partially observable Markov decision 
processes to improve dialogue man-
agement if training data can be made 
available.42 This set of language re-
sources is often not readily available 
for many new languages or new tasks. 
Indeed, obtaining large quantities of 
training data that is closely matched 
to the domain is perhaps the single 
most reliable method to make speech 
systems work in practice. 

Over the past three decades, the 
speech community has developed and 
refined an experimental methodol-
ogy that has helped to foster steady 
improvements in speech technology. 
The approach that has worked well is 
to develop shared corpora, software 
tools, and guidelines that can be used 
to reduce differences between experi-
mental setups down to the algorithms, 
so it becomes easier to quantify funda-
mental improvements. Typically, these 
corpora are focused on a particular 
task. Unfortunately, current language 
models are not easily portable across 
different tasks as they lack linguistic 
sophistication to consistently distin-
guish meaningful sentences from 
meaningless ones. Discourse structure 
is not considered either, merely the lo-
cal collocation of words. 

This strategy is quite different from 
the human experience. For our entire 
lives, we are exposed to all kinds of 
speech data from uncontrolled envi-
ronments, speakers, and topics, (that 
is, everyday speech). Despite this varia-
tion in our own personal training data 
we are all able to create internal mod-
els of speech and language that are re-
markably adept at dealing with varia-
tion in the speech chain. This ability 
to generalize is a key aspect of human 
speech processing that has not yet 

found its way into modern speech sys-
tems. Research activities on this topic 
should produce technology that will 
operate more effectively in novel cir-
cumstances, and that can generalize 
better from smaller amounts of data. 
Another research area could explore 
how well information gleaned from 
large resource languages and/or do-
mains generalize to smaller resource 
languages and domains.

The challenge here is to create spo-
ken language technologies that are 
rapidly portable. To prepare for rapid 
development of such spoken language 
systems, a new paradigm is needed to 
study speech and acoustic units that 
are more language-universal than lan-
guage-specific phones. Three specific 
research issues must be addressed: 
cross-language acoustic modeling of 
speech and acoustic units for a new 
target language; cross-lingual lexical 
modeling of word pronunciations for 
new language; and cross-lingual lan-
guage modeling. By exploring correla-
tion between new languages and well-
studied languages, we can facilitate 
rapid portability and generalization. 
Bootstrapping techniques are keys to 
building preliminary systems from a 
small amount of labeled utterances, 
using them to label more utterance 
examples in an unsupervised manner, 
and iterating to improve the systems 
until they reach a comparable perfor-
mance level similar to today’s high-ac-
curacy systems. 

Dealing with uncertainties. The 
proven statistical DNN-HMM learn-
ing framework requires massive 
amounts of data to deal with uncer-
tainties. How to identify and handle 
a multitude of variability factors 
has been key to building successful 
speech recognition systems. Despite 
the impressive progress over the past 
decades, today’s speech recognition 
systems still degrade catastrophically 
even when the deviations are small in 
the sense the human listener exhib-
its little or no difficulty. Robustness 
of speech recognition remains a ma-
jor research challenge. We hope for 
breakthroughs not only in algorithms 
but also in using the increasingly un-
supervised training data available in 
ways not feasible before. 

One pervasive type of variability in 
the speech signal is the acoustic envi-
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ronment. This includes background 
noise, room reverberation, the chan-
nel through which the speech is ac-
quired (such as cellular, Bluetooth, 
landline, and VoIP), overlapping 
speech, and Lombard or hyper-artic-
ulated speech. The acoustic environ-
ment in which the speech is captured 
and the communication channel 
through which the speech signal is 
transmitted represent significant 
causes of harmful variability that is 
responsible for drastic degradation 
of system performance. Existing tech-
niques are able to reduce variabil-
ity caused by additive noise or linear 
distortions, as well as compensate 
for slowly varying linear channels. 
However, more complex channel 
distortions such as reverberation or 
fast-changing noise, as well as the 
Lombard effect present a significant 
challenge. While deep learning en-
abled auto-encoding to create more 
powerful features, we expect more 
breakthroughs in learning useful fea-
tures that may or may not resemble 
imitating human auditory systems. 

Another common type of speech 
variability studied intensively is due to 
different speakers’ characteristics. It 
is well known that speech characteris-
tics vary widely among speakers due to 
many factors, including speaker phys-
iology, speaker style, and accents—
both regional and non-native. The 
primary method currently used for 
making speech recognition systems 
more robust is to include a wide range 
of speakers (and speaking styles) in 
the training, so as to account for the 
variations in speaker characteristics. 
Further, current speech recognition 
systems assume a pronunciation lexi-
con that models native speakers of a 
language and train on large amounts 
of speech data from various native 
speakers of the language. Approach-
es have been explored in modeling 
accented speech, including explicit 
modeling of accented speech, adap-
tation of native acoustic models with 
only moderate success, as witnessed 
by some initial difficulties of deploy-
ing British English speech system in 
Scotland. Pronunciation variants have 
also been incorporated in the lexicon 
to receive only small gains. Similarly, 
small progress has been made for de-
tecting speaking rate change. 

Having Socrates’ wisdom. Like 
most of the ancient Greeks, speech rec-
ognition systems lack the wisdom of 
Socrates. The challenge here is to cre-
ate systems that reliably detect when 
they do not know a (correct) word. A 
clue to the occurrence of such error 
events is the mismatch between an 
analysis of a purely sensory signal un-
encumbered by prior knowledge, such 
as unconstrained phone recognition, 
and a word- or phrase-level hypothesis 
based on higher-level knowledge, often 
encoded in a language model. A key 
component of this research would be 
to develop novel confidence measures 
and accurate models of uncertainty 
based on the discrepancy between sen-
sory evidence and a priori beliefs. A nat-
ural sequel to detection of such events 
would be to transcribe them phoneti-
cally when the system is confident that 
its word hypothesis is unreliable, and 
to devise error-correction schemes.

Current systems have difficulty in 
handling unexpected—and thus often 
the most information rich—lexical 
items. This is especially problematic 
in speech that contains interjections 
or foreign or out-of-vocabulary words, 
and in languages for which there is 
relatively little data with which to build 
the system’s vocabulary and pronun-
ciation lexicon. A common outcome 
in this situation is that high-value 
terms are overconfidently misrecog-
nized as some other common and sim-
ilar-sounding word. Yet, such spoken 
events are key to tasks such as spoken 
term detection and information extrac-
tion from speech. Their accurate detec-
tion is therefore of vital importance. 

Conclusion
Over the last four decades, there have 
been a number of breakthroughs in 
speech recognition technologies that 
have led to the solution of previously im-
possible tasks. Here, we will summarize 
the insights gained from the research 
and product development advances. 

In 1976, the computational power 
available was only adequate to perform 
speech recognition on highly con-
strained tasks with low branching fac-
tors (perplexity). Today, we are able to 
handle nearly unlimited vocabularies 
with much larger branching factors. 
In 1976, the fastest computer available 
for routine speech research was a dedi-

For the most part, 
algorithm designers 
for speech systems 
have ignored 
investigation  
of parallelism, 
partly because  
the advance  
of scalability has 
been so reliable. 
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cated PDP-10 with 4MB memory. To-
day’s systems have access to a million 
times more computational power in 
training the model. Thousands of pro-
cessors and nearly unlimited collective 
memory capacity in the cloud are rou-
tinely used. These systems can use mil-
lions of hours of speech data collected 
from millions of people from the open 
population. The power of these sys-
tems arises mainly from their ability 
to collect, process, and learn from very 
large datasets.

The basic learning and decoding 
algorithms have not changed sub-
stantially in 40 years. However, many 
algorithmic improvements have been 
made, such as how to use distribut-
ed algorithms for the deep learning 
task. Surprisingly, even though there 
is probably enough computational 
power and memory in iPhone-like 
smartphone devices, it appears that 
speech recognition is currently done 
on remote servers with the results 
being available within a few hun-
dred milliseconds on the iPhone. 
This makes it difficult to dynamically 
adapt to the speaker and the environ-
ment, which have the potential to re-
duce the error rate by half. 

Dealing with previously unknown 
words continues to be a problem for 
most systems. Collecting very large 
vocabularies based on Web-based 
profiling makes it likely that the user 
would almost always use one of the 
known words. Today’s Web search 
engines store over 500 million entity 
entries, which can be powerful to aug-
ment the vocabulary that is typically 
much smaller for speech recognition. 
The social graph used for Web search 
engines can also be used to dramati-
cally reduce the needed search space. 
One final point is that mixed-lingual 
speech, where phrases from two or 
more languages may be intermixed, 
makes the new word problem more dif-
ficult.17 This is often the case for many 
countries where English is mixed with 
the native language. 

The associated problem of error de-
tection and correction leads to difficult 
user interface choices for which good 
enough solutions have been adopted 
by “Dragon NaturallySpeaking” and 
subsequent systems. We believe mul-
timodal interactive metaphor will be 
a dominant metaphor as illustrated by 

MiPad demo16 and Apple Siri-like ser-
vices. We are still missing human-like 
clarification dialog for new words pre-
viously unknown to the system. 

Another related problem is the rec-
ognition of highly confusable words. 
Such systems require the use of more 
powerful discrimination learning. Dy-
namic sparse data learning, as is rou-
tinely done by human beings, is also 
missing in most of the systems that 
depend on large data-based statistical 
techniques. 

Speech recognition in the next 40 
years will pass the Turing test. It will 
truly bring the vision of Star Trek-like 
mobile devices to reality. We expect 
speech recognition to help bridge 
the gap between us and machines. 
It will be a powerful tool to facilitate 
and enhance natural conservation 
among people regardless of barriers 
of location or language, as the New 
York Times storya illustrated by Rick 
Rashid’s English to Chinese speech 
translation demo.b 	

a	 http://nyti.ms/190won1
b	 https://www.youtube.com/watch?v=Nu-nlQqFCKg
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