GLOBAL BANDWIDTH RESEARCH SERVICE

The content on the following pages is a section from TeleGeography's Global Bandwidth Research Service.

The work is based on sources believed to be reliable, but the publisher does not warrant the accuracy or completeness of any information for any purpose and is not responsible for any errors or omissions.

This work is for the confidential use of subscribers. Neither the whole nor any part of this publication may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopied, recorded or otherwise, without prior written consent from PriMetrica, Inc.

All rights reserved. Copyright © 2007 PriMetrica, Inc.

TeleGeography Research

A Division of PriMetrica, Inc. Washington, D.C. • San Diego • Exeter U.S. tel: +1 202 741 0020 • U.K. tel: +44 1392 315567 www.telegeography.com

Executive Summary

The rise and fall of the wholesale market has become a cautionary tale equivalent to a Grimm Brothers story for telecom executives. In the late 1990s and in the beginning of the new millennium, the wholesale bandwidth market witnessed remarkable engineering achievements, unprecedented volumes of capital expenditures, and, judging from companies' market capitalizations, limitless optimism. Of course, things didn't work out exactly as planned. By 2001, the supply of long-haul capacity had vastly outstripped market demands for bandwidth and capacity prices collapsed, dragging dozens of carriers into bankruptcy, wiping out billions of dollars of market capitalization and destroying tens of thousands of jobs. Wholesale carriers struggled to regain their footing while working through an immense glut of capacity.

The passage of time, combined with steadily growing demands for network services, have largely eliminated the capacity glut. Balance sheets have stabilized and carriers are beginning to write a new chapter to their story. Developments in this story include new capacity deployments driven by actual demand rather than blue-sky projections, improved pricing stability, and circuit prices reflecting

FIGURE 1 Worldwide International Bandwidth Growth, 2002-2006

KEY POINTS

Only 15 percent of potential subsea capacity was lit by year-end 2006. \rightarrow

The cost of lighting long-haul network DWDM capacity has fallen nearly 30 percent per year since 2001. →

Given the increasing

importance of operating costs relative to construction and upgrade costs, the wave of mergers and acquisitions will almost certainly continue. →

High-capacity wavelength prices are falling more than 20 percent on some routes and will continue to fall in the near future. The price of a 10 Gbps wavelength from Los Angeles-New York decreased 30 percent in 2006. →

FIGURE 2 Submarine Cable Lit and Maximum Capacities, 1996-2006

providers' underlying costs. However, it is hardly clear whether the tale will end with sunshine and lollipops. The wholesale market is a complex and rapidly changing environment. While the market meltdown dragged down all providers, it is likely that this new phase of the market's evolution will see a greater diversity of fortunes, both by carrier and by region. TeleGeography's *Global Bandwidth Research Service* analyzes, quantifies, and explains how the wholesale bandwidth market got here and where it is headed.

Demand. The latest chapter in the wholesale bandwidth market's history begins with the idea that burgeoning Internet traffic is absorbing existing bandwidth. The wave of bandwidth demand projected in the late 1990s is finally materializing, albeit more than five years too late to save most network operators from bankruptcy. Broadband subscribers in Europe have increased over 90 percent since 2004 to more than 80 million households. Similarly, in the U.S., more than 65 million households now have broadband connections. The growing ubiquity of broadband access has enabled the development of new, high bandwidth applications—particularly, video. Video is now the primary driver of Internet traffic growth, including YouTube, iTunes online store, and especially, video delivered via peer-to-peer applications such as BitTorrent. As broadband penetration continues to increase and new bandwidth-intensive applications emerge, wholesale network demand will remain strong.

Supply. Growing demand for long-haul network capacity has eliminated the surplus that plagued the market and brought supply and demand into balance. Capacity upgrades are occurring because carriers have depleted their network inventories. Figure 1 (Worldwide International Bandwidth Growth, 2002-2006) shows used international bandwidth growing steadily between 40 and 50 percent since 2004.

FIGURE 3 Unit Cost of Submarine Cable Systems, 1997-2009

While traffic growth has absorbed the excess inventory of active circuits, network operators have no shortage of *potential* capacity that can be lit to meet future demands. On subsea routes, the ratio of lit to potential capacity is only about 15 percent, up from 8 percent in 2001 (see Figure 2. Submarine Cable Lit and Maximum Capacities, 1999-2006). Even on the trans-Atlantic route, which has the highest ratio of lit-to-potential capacity worldwide, only 28 percent of potential capacity has been lit. The relative ease of adding fibers to a terrestrial network during construction led to a vast amount of unused potential capacity in the ground. Because of this, the ratio of potential capacity to lit bandwidth on most terrestrial routes is even higher than on undersea cables.

Ample capacity exists on most major routes, yet some regions still appear underserved. Sensing opportunity, cable operators are rushing to get a foothold in these markets. Most of these new projects are in developing regions, such as Africa, the Caribbean, and the Middle East, or on routes with limited numbers of competitors, such as the trans-Pacific span. Australia, where broadband subscribers have grown nearly tenfold since 2002, is slated to receive two new undersea cables by the end of 2008. However, in their eagerness to bring new systems to market, cable builders may jeopardize the fragile stability of the market. For example, if all of the proposed new trans-Pacific submarine cables were built, the amount of potential submarine capacity available would nearly double in the span of a few years.

Costs. The renewed wave of cable construction is facilitated in significant part by the decreasing cost of building a new submarine cable system. The unit cost (cost per kilometer per Gbps) of constructing a new submarine cable has decreased from \$5,308 in 1997-1998 to an expected unit cost of \$340 in 2007-2009, a decrease of nearly 94 percent (see Figure 3. Unit Cost of Submarine Cable Systems, 1997-2009).

FIGURE 4 STM-1 Price Trends 2002-0

Notes: Prices reflect median STM-1 monthly lease prices, exclusive of installation fees and local access. Source: TeleGeography research

© 2007 PriMetrica, Inc.

While undersea cable construction costs have fallen precipitously, most operators are not building new cables and are instead adding capacity to their existing networks by lighting additional wavelengths or fibers. For example, VSNL, the operator of the largest trans-Pacific cable, upgraded its cable twice in 2006. While the cost of upgrading submarine cables has fallen dramatically over the past five years, it remains significant and must be carefully cost-justified.

The cost of adding capacity to terrestrial networks has also fallen sharply. The cost of lighting long-haul DWDM capacity has fallen nearly 30 percent each year since 2001. However, this progress has not come in steady increments, nor has it benefitted all operators equally. Typically, costs drop sharply with the introduction of new generations of equipment. Not surprisingly, operators with the newest generation of equipment usually also enjoy the lowest cost structure. These reduced cost structures are allowing carriers to simultaneously add capacity to their networks and underprice rivals that existing inventories of lit capacity.

While the cost of adding capacity has fallen sharply, operational and maintenance costs (O&M) and overhead account for the lion's share of terrestrial network operators' costs. Unlike network deployments and upgrades, O&M costs don't lend themselves well to an easy technological solution. Instead, carriers are finding the most effective means of reducing per-unit O&M costs is to acquire rival carriers and to reduce overhead.

Pricing. The direction of wholesale price trends are the clearest indicator of supply, demand, and costs. During the early years of the decade, as carriers were writing off network construction costs and supply vastly exceeded demand, prices frequently dropped by 40 percent or more annually. Those days appear to be over: median prices of STM-1 (155 Mbps) circuits have stabilized on most competitive routes worldwide in the past two years (see Figure 4. STM-1 Price Trends, 2002-2006).

While prices of mid-sized circuits, such as STM-1/OC-3 and STM-4/OC-12, are showing improved stability, prices of high capacity circuits, such as 2.5 Gbps and 10 Gbps wavelengths, have recently begun to tumble, particularly in the U.S. For example, the median price of a 10 Gbps wavelength from New York to Los Angeles has fallen more than 30 percent in the past six months alone (see Figure 5. Los Angeles-New York Circuit Prices, 2005-2006). As carriers' costs have declined, continued fierce competition has forced them to pass these cost improvements to their customers.

Outlook. Most fairy tales feature a happy ending and teach a lesson (usually, "don't trust your stepmother"). Despite the improving market conditions, it's not yet clear that we've arrived at the happy ending carriers would like to see or that market participants have learned from the lessons of the lat bandwidth bust. Price declines in high-capacity circuits, combined with providers pushing bandwidth supply ahead of demand, could lead to another catastrophe for the wholesale market. Will the next twist in our tale feature a disaster equal to the crash brought on by the burst of the telecom bubble six years ago? Probably not. Wholesale providers are attempting to ward off trouble by acquiring and merging with rivals to improve operational efficiencies and exapand their potential markets. Continued consolidation and strong demand give hope to a market that has a history of dramatic up and downs.

Notes: Series represent median monthly lease prices for each circuit during 2005-2006.

Source: TeleGeography research

© 2007 PriMetrica, Inc.

Table of Contents

I. EXECUTIVE SUMMARY

II. SUPPLY AND DEMAND

- Supply and Demand Trends
- Long-Haul Network Supply
- Long-Haul Network Demand
- Regional Supply and Demand Overview
 - Europe United States Intra-Asia Trans-Pacific Trans-Atlantic U.S. – Latin America Europe-Asia Middle East and North Africa Sub-Saharan Africa
- Emerging Bandwidth Demand Drivers
- Lessons Learned?

III. WHOLESALE PRICING

- Regional Bandwidth Pricing Trends
 - Trans-Atlantic Routes U.S. Domestic Routes Intra-European Routes Trans-Pacific Routes Intra-Asian Routes Europe-Asia Routes Latin America Routes
- Other Bandwidth Products Dark Fiber Long-Haul Ethernet IRUs
- General Pricing Trends
- Factors Affecting Prices
- Outlook

IV. COST

- Submarine Cable Costs
- Terrestrial Network Costs

V. PRODUCTS & CONTRACTS

- Products
- Contract Types

List of Figures

I. EXECUTIVE SUMMARY

- 1. Worldwide International Bandwidth Growth, 2002-2006
- 2. Submarine Cable Lit and Maximum Capacities 1996-2006
- 3. Unit Cost of Submarine Cable Systems, 1997-2009
- 4. STM-1 Price Trends, 2002-2006
- 5. Los Angeles-New York Circuit Prices, 2005-2006

II. SUPPLY AND DEMAND

- 1. Worldwide International Bandwidth Growth, 2002-2006
- 2. Selected Submarine Cable Upgrades
- 3. Major Network Industry Acquisitions
- 4. Four Main Types of Submarine Cable Ownership
- 5. Submarine Cable Lit and Maximum Capacities, 1996-2006
- 6. Lit versus Potential Capacity on Major Submarine Cable Routes, 2006
- 7. International Internet, Switched Voice and Private Networks Capacity Growth, 2000-2006
- 8. Comparing Potential, Lit, Purchased, and Used Trans-Atlantic Capacity
- 9. International Bandwidth Usage in Selected European Cities, 2003-2006 (Gbps)
- 10. European Broadband Subscriber Growth, 2004-2006
- 11. European Network Upgrades, 2006 & 2007
- 12. Wholesale Bandwidth Providers in Selected European Cities
- 13. Wholesale Bandwidth Providers in Selected U.S. Cities
- 14. U.S. Network Upgrades, 2006 & 2007
- 15. U.S. Broadband Subscriber Growth, 2004-2006
- 16. Used, Purchased, and Lit Intra-Asia Bandwidth, 2000-2006 (Gbps)
- 17. Intra-Asia Bandwidth Supply and Demand, 2000-2006
- 18. Intra-Asia Submarine Cable Supply, 2000-2006 (Gbps)
- 19. Intra-Asia & Trans-Pacific Submarine Cable Connectivity
- 20. Used, Purchased, and Lit Trans-Pacific Bandwidth, 2000-2006 (Gbps)
- 21. Trans-Pacific Bandwidth Supply and Demand, 2000-2006
- 22. Trans-Pacific Submarine Cable Supply, 2000-2006 (Gbps)
- 23. Used, Purchased, and Lit Trans-Atlantic Bandwidth, 2000-2006 (Gbps)
- 24. Trans-Atlantic Bandwidth Supply and Demand, 2000-2006
- 25. Trans-Atlantic Submarine Cable Supply, 2000-2006 (Gbps)
- 26. Used, Purchased, and Lit U.S.-Latin America Bandwidth, 2000-2006 (Gbps)
- 27. U.S.-Latin America Bandwidth Supply and Demand, 2000-2006
- 28. U.S.-Latin America Submarine Cable Supply, 2000-2006
- 29. Used, Purchased, and Lit Europe-Asia Bandwidth, 2000-2006 (Gbps)
- 30. Europe-Asia Bandwidth Supply and Demand, 2000-2006
- 31. Europe-Africa-Asia Submarine Cable Supply, 2000-2006
- 32. Middle East and North Africa Bandwidth Usage, 2000-2006
- 33. African Submarine Cable Capacity
- 34. Sub-Saharan Africa Bandwidth Usage, 2001-2006
- 35. Submarine Cable Supply by Route, 2000-2006 (Tbps)
- 36. Submarine Cable Supply by Route, 2000-2006 (Gbps)

List of Figures

- 37. International Bandwidth Usage by Country, 2002-2006 (Mbps)
- 38. Map of International Bandwidth Usage per Capita by Country, 2000 & 2006
- 39. International Submarine Cable Capacity, 2007
- 40. Supply and Demand Methodology and Definitions

III. WHOLESALE PRICING

- 1. STM-1 Price Trends, 2002-2006
- 2. London-New York STM-4 Lease Prices by Carrier, 2004-2006
- 3. London New York STM-1 Monthly Lease Price vs. Unit O&M Costs, 2002-2006
- 4. Trans-Atlantic Demand, Revenue and Effective Price Change 2002-2006
- 5. Trans-Atlantic Median OC-3/STM-1 Monthly Lease Prices, Q4 2004-Q4 2006 (USD)
- 6. Los Angeles-New York OC-3 Lease Prices by Carrier, 2003-2006
- 7. Los Angeles-New York Circuit Prices, 2005-2006
- 8. Los Angeles-New York OC-48 versus 2.5 Gbps Wavelength Prices, Q4 2006
- 9. U.S. Indicative Capacity-Price Multiples
- 10. Intra-U.S. Median OC-3 Monthly Lease Prices, Q4 2004-Q4 2006 (USD)
- 11. OC-3 Lease Prices on Major U.S. Routes, Q4 2001-Q4 2006
- 12. STM-1 Lease Prices on Major European Routes, Q4 2001-Q4 2006
- 13. European. Indicative Capacity-Price Multiples
- 14. Intra-European Median STM-1 Monthly Lease Prices, Q4 2004-Q4 2006 (USD)
- 15. Trans-Pacific STM-1 Annual Lease Prices, 2002-2006
- 16. Los Angeles-Tokyo STM-1 Lease Prices by Carrier, 2003-2006
- 17. Trans-Pacific Demand, Revenue and Effective Price Change, 2002-2006
- 18. Trans-Pacific Median STM-1 Monthly Lease Prices, Q4 2004-Q4 2006 (USD)
- 19. Hong Kong-Tokyo STM-1 Lease Prices by Carrier, 2003-2006
- 20. Intra-Asian STM-1 Annual Lease Prices, Q4 2002-Q4 2006
- 21. Intra-Asian Demand, Revenue and Effective Price Change, 2002-2006
- 22. E-1 Monthly Lease Prices to India Q2 2004 Q4 2006
- 23. Monthly Lease Prices to China, 2003-2006
- 24. Intra-Asian Median STM-1 Monthly Lease Prices, Q4 2004-Q4 2006 (USD)
- 25. Europe-Asia Median STM-1 Monthly Lease Prices, Q4 2004-Q4 2006 (USD)
- 26. London-Tokyo STM-1 Monthly Lease Prices versus Underlying Route Prices, 2002-2006
- 27. U.S.-Latin America Median E-1 Monthly Lease Prices, Q1 2004-Q4 2006
- 28. U.S.-Latin America Demand, Revenue and Effective Price Change, 2002-2006
- 29. U.S.-Latin America Median OC-3/STM-1 Monthly Lease Prices, Q4 2004-Q4 2006 (USD)
- 30. London-Paris Median Price per Mbps, STM-1 versus FastE, by Carrier
- 31. IRU versus Lease Prices 2006
- 32. Absolute versus Relative Price Ranges on Major Routes, Q4 2006
- 33. Median Price per Mbps for U.S. and European Routes, Across Capacities
- 34. Circuit Mix of International Internet Backbones, 2002 2006
- 35. Lease Price versus Distance on Major U.S. and European Routes Q4 2006
- 36. Unit Price versus Distance in Europe and the U.S. Q4 2006
- 37. Median OC-3/STM-1 Monthly Lease Prices on Major Terrestrial Routes, Q4 2004-Q4 2006 (USD)

List of Figures

IV. COST

- 1. Construction Cost of Submarine Cables, 1997 2009
- 2. Unit Cost of Submarine Cable Systems, 1997 2009
- 3. Sample Submarine Cable Costs
- 4. Unit O&M Cost and Cable Retirement
- 5. Upgrade Cost of Submarine Cable Systems by Route
- 6. Integration Lowers Costs
- 7. Short-Term versus Long-Term Costs of Adding Capacity, 2007
- 8. Breakdown of Network Operations and Maintenance Costs, 2006

V. PRODUCTS & CONTRACTS

- 1. Alternatives to Raw Capacity
- 2. Advantages and Disadvantages of IRUs and Leases
- 3. Guaranteeing Network Availability in Short-Term Leases